The largest database of trusted experimental protocols

Digital sight ds fi1 ccd camera

Manufactured by Nikon

The Digital Sight DS-Fi1 CCD camera is a compact and high-resolution digital camera designed for microscopy applications. It features a 5.0-megapixel CCD sensor that captures detailed images with a maximum resolution of 2560 x 1920 pixels. The camera is capable of providing real-time image preview and recording at a frame rate of up to 15 frames per second. It supports a variety of image file formats, including JPEG and TIFF, and can be connected to a computer via a USB 2.0 interface for image transfer and processing.

Automatically generated - may contain errors

2 protocols using digital sight ds fi1 ccd camera

1

Equine BMSC Migration Assay

Check if the same lab product or an alternative is used in the 5 most similar protocols
Passage 3 to 4 equine BMSCs (n = 3) were plated onto 24-well tissue culture plates (Corning Inc., Corning, NY, USA) within silicone inserts containing a defined, 500 μm cell-free gap (Ibidi®, Martinsried, Germany) for migration assays. After 6 h, media was changed to either control media, media containing β-lactose (100 mM, 200 mM) or media supplemented with recombinant equine IL-1β (5 ng/mL, 10 ng/mL) or recombinant equine TNF-α (25 ng/ml 50 ng/ml). Twenty hours later, inserts were removed and media was replaced with control media or media containing β-lactose (100 mM, 200 mM). Phase contrast images were obtained at 0, 3, 8, 12, 24 and 48 hours following insert removal, using three images/well obtained with a × 10, NA 0.25 objective on an Olympus CK2 microscope with a Nikon Digital Sight DS-Fi1 CCD camera to image the entire cell-free gap. NIH Fiji was used to define the x,y coordinates of the leading edges of cells migrating across the cell-free region. Custom software (Python Software Foundation, Wilmington, DE, USA) was designed to measure the mean linear cell-free distance for each image, which was normalized to the cell-free distance at time zero for each treatment.
+ Open protocol
+ Expand
2

Transducing Human Neural Progenitors with Channelrhodopsin

Check if the same lab product or an alternative is used in the 5 most similar protocols
Our early attempts to establish a stable hChR2 transgenic human embryonic stem cell (hES) clonal line to avoid variable transduction and expression efficiency was hampered by problems in stable transgene expression despite the presence of the transgenes hChR2 and YFP in the genomic DNA (S1 Fig and S1 Table). After differentiation of H9 cells to NPs and neurons, transgene expression was not detectable; varying neural differentiation methods. Therefore, we decided to transduce cells at the NP stage of differentiation. Neural progenitor cells (2 million) were plated on a matrigel-coated 35mm dish on day 34. Two days after plating, cells were treated with polybrene (6 μg/mL) in NP expansion medium at 37°C for 15min. Lentivirus harboring hSyn-hChR2(H134R)-eYFP-WPRE was added to each well at moi 0 or 13 and incubated at 37°C for 24 hours. The virus medium was replaced with new NP expansion media (NPEM; DMEM/F12, N2, B27, 20ng/mL FGF2) on the next day and live cell images of NPs or neurons expressing hChR2 were acquired 4–5 days after transduction using a Nikon TS 100 fluorescence inverted microscope (Nikon Instruments Inc., Melville, NY) with a Digital Sight DS Fi1 CCD camera (Nikon Instruments Inc., Melville, NY).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!