The largest database of trusted experimental protocols

Protease inhibitors and phosphatase inhibitors

Manufactured by MedChemExpress
Sourced in United States

Protease inhibitors and phosphatase inhibitors are laboratory reagents used in various biochemical and cell biology applications. Protease inhibitors are used to prevent the degradation of proteins by proteolytic enzymes, while phosphatase inhibitors are used to maintain the phosphorylation state of proteins. These reagents are commonly used in protein purification, enzyme activity assays, and cell signaling studies.

Automatically generated - may contain errors

3 protocols using protease inhibitors and phosphatase inhibitors

1

Western Blot Analysis of Aorta and Macrophages

Check if the same lab product or an alternative is used in the 5 most similar protocols
The protein levels of aorta tissues and RAW264.7 macrophages were examined using western blot. The protein was extracted by lysing the aortic tissues and cells with lysis buffer supplemented with 1% protease inhibitors and phosphatase inhibitors (MedChemExpress, USA) on ice. After centrifugation, the supernatant was collected and quantified the concentration using a BCA kit (Boster Biological Technology, Wuhan, China). Then the equal amount of proteins (20 μg) were separated by 10%-12% SDS-PAGE and transferred to PVDF membranes (Millipore). After blocking with 5% non-fat milk, the membranes were probed with different primary antibodies overnight at 4℃, including PI3K, p-PI3K (Tyr 458), Akt, p-Akt (Ser 473), mTOR, p-mTOR (Ser 2448), ULK1, p-ULK1 (Ser 317), p70S6 kinase (S6K), p-S6K (Thr389), S6, p-S6 (Ser235/236), p62, iNOS (Cell Signaling Technology, Boston, USA), LC3 (Proteintech Biotechnology, Chicago, USA), Beclin1, ABCA1, ABCG1 (Abcam, Cambridge, UK), Arg-1, CD206, and GAPDH, β-actin (Abclonal, Boston, USA). Subsequently, the membranes were incubated with horseradish peroxidase-conjugated secondary antibodies (Boster Biological Technology, Wuhan, China). The proteins bands were visualized using ECL kit (Boster Biological Technology, Wuhan, China) and analyzed with Image J software (NIH, USA).
+ Open protocol
+ Expand
2

Protein Expression Analysis in Aorta and Macrophages

Check if the same lab product or an alternative is used in the 5 most similar protocols
The protein levels of aorta tissues and RAW264.7 macrophages were examined using western blot. The protein was extracted by lysing the aortic tissues and cells with lysis buffer supplemented with 1% protease inhibitors and phosphatase inhibitors (MedChemExpress, USA) on ice. After centrifugation, the supernatant was collected and quantified the concentration using a BCA kit (Boster Biological Technology, Wuhan, China). Then the equal amount of proteins (20 µg) were separated by 10%-12% SDS-PAGE and transferred to PVDF membranes (Millipore). After blocking with 5% non-fat milk, the membranes were probed with different primary antibodies overnight at 4 , including PI3K, p-PI3K (Tyr 458), Akt, p-Akt (Ser 473), mTOR, p-mTOR (Ser 2448), ULK1, p-ULK1 (Ser 317), p62, iNOS (Cell Signaling Technology, Boston, USA), LC3 (Proteintech Biotechnology, Chicago, USA), Beclin1, ABCA1, ABCG1 (Abcam, Cambridge, UK), Arg-1, CD206, and GAPDH, β-actin (Abclonal, Boston, USA). Subsequently, the membranes were incubated with horseradish peroxidase-conjugated secondary antibodies (Boster Biological Technology, Wuhan, China). The proteins bands were visualized using ECL kit (Boster Biological Technology, Wuhan, China) and analyzed with Image J software (NIH, USA).
+ Open protocol
+ Expand
3

Western Blot Analysis of Aortic Tissue and Macrophages

Check if the same lab product or an alternative is used in the 5 most similar protocols
The protein levels of aorta tissues and RAW264.7 macrophages were examined using western blot. The protein was extracted by lysing the aortic tissues and cells with lysis buffer supplemented with 1 % protease inhibitors and phosphatase inhibitors (MedChemExpress, USA) on ice. After centrifugation, the supernatant was collected and quanti ed the concentration using a BCA kit (Boster Biological Technology, Wuhan, China). Then the equal amount of proteins (20 μg) were separated by 10 %-12 % SDS-PAGE and transferred to PVDF membranes (Millipore). After blocking with 5 % non-fat milk, the membranes were probed with different primary antibodies overnight at 4℃, including PI3K, p-PI3K (Tyr 458), Akt, p-Akt (Ser 473), mTOR, p-mTOR (Ser 2448), ULK1, p-ULK1 (Ser 317), p70S6 kinase (S6K), p-S6K (Thr389), S6, p-S6 (Ser235/236), p62, iNOS (Cell Signaling Technology, Boston, USA), LC3 (Proteintech Biotechnology, Chicago, USA), Beclin1, ABCA1, ABCG1 (Abcam, Cambridge, UK), Arg-1, CD206, and GAPDH, β-actin (Abclonal, Boston, USA). Subsequently, the membranes were incubated with horseradish peroxidase-conjugated secondary antibodies (Boster Biological Technology, Wuhan, China). The proteins bands were visualized using ECL kit (Boster Biological Technology, Wuhan, China) and analyzed with Image J software (NIH, USA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!