The largest database of trusted experimental protocols

Alexa fluor dye af 647

Manufactured by Thermo Fisher Scientific

Alexa Fluor dye AF-647 is a fluorescent dye developed by Thermo Fisher Scientific. It has an excitation maximum at 650 nm and an emission maximum at 665 nm, making it suitable for use in a variety of fluorescence-based applications. The dye is known for its brightness, photostability, and compatibility with common fluorescence detection equipment.

Automatically generated - may contain errors

Lab products found in correlation

2 protocols using alexa fluor dye af 647

1

Fc Receptor Binding Assay for RNase Fc Fusion

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 18

To examine the ability of RNase Fc fusion proteins to bind Fc receptors in vitro, RSLV124 (wild type Fc domain) and RSLV-132 (mutant Fc domain; P238S/P331S) were incubated with an Fc bearing human myeloid cell line, THP1 and the specific binding to the cells was quantitated by fluorescence-activated cell sorting (FACS) analysis. RLSV-124 and RSLV-132 were fluorescently labeled using alexa fluor dye AF-647 from Invitrogen (Cat # A20006). After dialyzing the RNase Fc fusion proteins to remove the unbound dye, varying amounts of the labeled proteins were incubated with THP1 cells for one hour, the cells were washed stringently to remove unbound RNase Fc fusion protein, and the specifically bound protein was quantitated by FACS measuring mean fluorescence intensity. The results in FIG. 22 demonstrate that the RSLV-132 protein which has a mutant Fc domain has significantly less Fc receptor binding than RSLV-124 which has a wild type Fc domain, exhibiting greater than 4-fold reduction in Fc receptor binding This finding is consistent with our previous findings that RNase Fc fusion proteins with a mutant Fc domain (P238S/P331S) have significantly decreased cytotoxicity.

+ Open protocol
+ Expand
2

Fc Receptor Binding of RNase Fc Fusion Proteins

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 18

To examine the ability of RNase Fc fusion proteins to bind Fc receptors in vitro, RSLV124 (wild type Fc domain) and RSLV-132 (mutant Fc domain; P238S/P331S) were incubated with an Fc bearing human myeloid cell line, THP1 and the specific binding to the cells was quantitated by fluorescence-activated cell sorting (FACS) analysis. RLSV-124 and RSLV-132 were fluorescently labeled using alexa fluor dye AF-647 from Invitrogen (Cat # A20006). After dialyzing the RNase Fc fusion proteins to remove the unbound dye, varying amounts of the labeled proteins were incubated with THP1 cells for one hour, the cells were washed stringently to remove unbound RNase Fc fusion protein, and the specifically bound protein was quantitated by FACS measuring mean fluorescence intensity. The results in FIG. 22 demonstrate that the RSLV-132 protein which has a mutant Fc domain has significantly less Fc receptor binding than RSLV-124 which has a wild type Fc domain, exhibiting greater than 4-fold reduction in Fc receptor binding This finding is consistent with our previous findings that RNase Fc fusion proteins with a mutant Fc domain (P238S/P331S) have significantly decreased cytotoxicity.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!