The largest database of trusted experimental protocols

Snap kp sil 750 g

Manufactured by Biotage

The SNAP KP-Sil 750 g is a pre-packed flash chromatography column from Biotage. It is designed for purification and isolation of organic compounds using normal-phase chromatography.

Automatically generated - may contain errors

3 protocols using snap kp sil 750 g

1

Deplete THC from Cannabis Oil

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

In this example, a Biotage Isolera Flash Chromatography System was employed to process raw cannabis oil to deplete THC component. In this example, a Biotage Isolera Flash Chromatography System was employed to process raw cannabis oil to deplete THC component. 45 g hemp oil (injection mass 6 wt %) was dissolved in 22.5 mL petroleum ether and injected to a 750 g normal phase silica gel column (SNAP KP-Sil 750 g, BIOTAGE) and rinsed with pet ether for a total injection volume of 67.5 mL. Solvent A was petroleum ether; Solvent B was 99.9% diethyl ether. Solvents A and B were employed to elute the column at 200 mL/min in a step gradient of 4 vol % B for 6 column volumes, then 8 vol % B for 4 column volumes, then 40 vol % B for 4 column volumes. Eluate was monitored at 220 nm and 240 nm. 120 mL fractions were collected. Following elution, the peak fractions were subjected to analytical HPLC or TLC analysis. Fractions 1-20 (1-6 CV) and 36-45 (11.5-14 CV) were combined and solvents removed by rotoevaporation. Analytical HPLC was employed to determine relative amounts of cannabinoids of interest.

+ Open protocol
+ Expand
2

Cannabis Oil Purification by Flash Chromatography

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

In this example, a Biotage Isolera Flash Chromatography System was employed to process raw cannabis oil to deplete THC component. In particular, 45 g hemp oil (injection mass 6 wt %) was dissolved in 22.5 mL petroleum ether and injected to a 750 g normal phase silica gel column (SNAP KP-Sil 750 g, BIOTAGE) and rinsed with pet ether for a total injection volume of 67.5 mL. Solvent A was petroleum ether; Solvent B was 99.9% diethyl ether. Solvents A and B were employed to elute the column at 200 mL/min in a step gradient of 4 vol % B for 6 column volumes, then 8 vol % B for 4 column volumes, then 40 vol % B for 4 column volumes. Eluate was monitored at 220 nm and 240 nm. 120 mL fractions were collected. Following elution, the peak fractions were subjected to analytical HPLC or TLC analysis. Fractions 1-20 (1-6 CV) and 36-45 (11.5-14 CV) were combined and solvents removed by rotoevaporation. Analytical HPLC was employed to determine relative amounts of cannabinoids of interest.

+ Open protocol
+ Expand
3

Deplete THC from Cannabis Oil

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

In this example, a Biotage Isolera Flash Chromatography System was employed to process raw cannabis oil to deplete THC component. In this example, a Biotage Isolera Flash Chromatography System was employed to process raw cannabis oil to deplete THC component. 45 g hemp oil (injection mass 6 wt %) was dissolved in 22.5 mL petroleum ether and injected to a 750 g normal phase silica gel column (SNAP KP-Sil 750 g, BIOTAGE) and rinsed with pet ether for a total injection volume of 67.5 mL. Solvent A was petroleum ether; Solvent B was 99.9% diethyl ether. Solvents A and B were employed to elute the column at 200 mL/min in a step gradient of 4 vol % B for 6 column volumes, then 8 vol % B for 4 column volumes, then 40 vol % B for 4 column volumes. Eluate was monitored at 220 nm and 240 nm. 120 mL fractions were collected. Following elution, the peak fractions were subjected to analytical HPLC or TLC analysis. Fractions 1-20 (1-6 CV) and 36-45 (11.5-14 CV) were combined and solvents removed by rotoevaporation. Analytical HPLC was employed to determine relative amounts of cannabinoids of interest.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!