The largest database of trusted experimental protocols

Ethylene diamine tetraacetic acid (edta)

Manufactured by Cambrex

EDTA is a widely used laboratory reagent that functions as a chelating agent. It binds to metal ions, forming stable complexes. EDTA is commonly used in various analytical and experimental procedures, including sample preparation, metal ion removal, and buffer formulations.

Automatically generated - may contain errors

3 protocols using ethylene diamine tetraacetic acid (edta)

1

Western Blot Analysis of uPAR and FPR1

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells detached using 200 mg/L EDTA, 500 mg/L trypsin (Cambrex), were lysed in RIPA buffer (10 mM Tris pH 7.5, 140 mM NaCl, 0.1% SDS, 1% Triton X-100, 0.5% NP40) containing protease inhibitor mixture. Protein content of cell lysates was measured by a colorimetric assay (BioRad). Twenty and forty µicrograms of proteins from each cell lysate were separated on 10% SDS-PAGE and transferred onto a polyvinylidene fluoride membrane. The membranes were blocked with 5% non-fat dry milk and probed with 1 μg/mL R4 anti-uPAR monoclonal antibody recognizing uPAR D3 domain, 1 μg/mL anti-FPR1 polyclonal antibody (Abcam), or 0.2 μg/mL GAPDH Ab (Santa Cruz Biotechnology). Washed filters were incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody and detected by ECL (Amersham-GE Healthcare). Densitometry was performed using the NIH Image 1.62 software (Bethesda, MD). Each experiment was performed three times.
+ Open protocol
+ Expand
2

Immunoblot Analysis of uPAR and FPR1

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells detached using 200 mg/L EDTA, 500 mg/L trypsin (Cambrex), were lysed in RIPA buffer (10 mM Tris pH 7.5, 140 mM NaCl, 0.1%SDS, 1% Triton X-100, 0.5% NP40) containing protease inhibitor mixture. Protein content of cell lysates was measured by a colorimetric assay (BioRad). 40 μg proteins or 50 μl concentrated conditioned medium from A375 or A375M6 cells were separated on 10% SDS-PAGE and transferred onto a polyvinylidene fluoride membrane. In all cases, the membranes were blocked with 5% non-fat dry milk and probed with 1 μg/mL R4 anti-uPAR monoclonal antibody recognizing uPAR D3 domain, 1 μg/mL anti-FPR1 polyclonal antibody (#128296 Ab, Abcam), 0.2 μg/mL GAPDH Ab (Santa Cruz Biotechnology), or 1 μg/mL 389 anti-uPA polyclonal antibody (American Diagnostica). Washed filters were incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody and detected by ECL (Amersham- GE Healthcare). Densitometry was performed using the NIH Image 1.62 software (Bethesda,MD). Each experiment was performed three times.
+ Open protocol
+ Expand
3

Quantification of uPAR and FPR1 Protein Levels

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells detached using 200 mg/L EDTA, 500 mg/L trypsin (Cambrex), were lysed in RIPA buffer (10 mM Tris pH 7.5, 140 mM NaCl, 0.1%SDS, 1% Triton X-100, 0.5% NP40) containing protease inhibitor mixture. Protein content of cell lysates was measured by a colorimetric assay (BioRad). 30 and 60 μg proteins were separated on 10% SDS-PAGE under unreducing (to detect uPAR) or reducing conditions (to detect FPR1) and transferred onto a polyvinylidene fluoride membrane. Membranes were blocked with 5% non-fat dry milk and probed with 1 μg/mL R4 anti-uPAR mAb, recognizing the DII-DIII uPAR domains, 1 μg/mL anti-FPR1 polyclonal antibody (Ab) (#128296 Ab, Abcam), or 0.2 μg/mL GAPDH Ab (Santa Cruz Biotechnology). Washed filters were incubated with horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibody and detected by ECL (Amersham- GE Healthcare). Densitometry was performed using the NIH Image 1.62 software (Bethesda, MD.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!