The largest database of trusted experimental protocols

Automated spectrophotometer

Manufactured by Shimadzu
Sourced in Japan

The automated spectrophotometer is a laboratory instrument used to measure the absorbance or transmittance of light by a sample across a range of wavelengths. It is designed to perform these measurements automatically, without the need for manual operation.

Automatically generated - may contain errors

3 protocols using automated spectrophotometer

1

Pig Serum Immunoglobulin Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
A 10 mL blood sample was collected from two randomly selected pigs from each pen on d 14 and 28. The sampling was conducted by jugular vein puncture using a disposable vacutainer tube without anticoagulants (Becton Dickinson, Franklin, NJ, USA). The blood samples were then centrifuged by 3,000×g for 15 min 4°C, and separated serum was stored at −20°C until analysis. Immunoglobulin A (IgA), IgG, and IgM of serum were analyzed with immunoglobulin kits (Sanwei Biological Engineering Co., Ltd., Shandong, China), using an automated spectrophotometer (Shimadzu, Japan).
+ Open protocol
+ Expand
2

Nutrient Digestibility and Growth Performance in Pigs

Check if the same lab product or an alternative is used in the 5 most similar protocols
At the end of each phase, pigs were weighed individually, and feed consumption was measured to calculate average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F). Fecal grab samples were collected during the last 4 d of each phase to determine the apparent total tract digestibility of dry matter (DM), gross energy (GE), crude protein (CP), and Zn. Pens were cleaned before the start of sample collection and the fecal samples were then pooled within the pen, dried in a forced air oven at 60°C for 72 h, and ground in a Wiley mill (Thomas Model 4 Wiley Mill, Thomas Scientific, Swedesboro, NJ, USA) using a 1-mm screen for chemical analysis. Analysis for each sample was done in triplicate for DM (Method 930.15), CP (Method 990.03), ash (Method 942.05), Ca, and P (method 985.01; 16) according to the methods of AOAC [11 ]. The GE of diets and feces were measured using a bomb calorimeter (Model 1261, Parr Instrument Co., Molin, IL, USA), while Cr concentrations were determined [12 (link)] with an automated spectrophotometer (Shimadzu, Japan).
+ Open protocol
+ Expand
3

Nutrient Digestibility in Chickens

Check if the same lab product or an alternative is used in the 5 most similar protocols
Three birds per pen were transferred to metabolic cage to conduct the trial in nutrient digestibility. The chickens were fed diets with chromic oxide (0.25%) added for the last 10 days (adaptive and collective periods) of each phase to determine the apparent total tract digestibility of dry matter (DM), gross energy (GE), crude protein (CP) and Cu. The excreta samples per replicate were collected into stainless steel trays and then dried in a forced-air oven at 60°C for 72 hours, grounded in a Wiley Mill (Thomas Model 4 Wiley Mill; Thomas Scientific, Swedesboro, NJ, USA) using a 1-mm screen, and used for chemical analysis. Each sample was analyzed in triplicate for DM (Method 930.15) and CP (Method 990.03), according to the methods of AOAC [31 ]. The Cu in the feed, and excreta was determined by inductively coupled plasma emission spectroscopy (ICP) according to the methods of AOAC [31 ]. The GE of the diets and excreta were measured using a bomb calorimeter (Model 1261, Parr Instrument, Molin, IL, USA), and the chromium concentrations were determined with an automated spectrophotometer (Shimadzu, Japan) according to the procedure described by Fenton and Fenton [32 (link)].
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!