The largest database of trusted experimental protocols

3 protocols using s9390

1

Affinity Purification of APC Protein

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cold APC purification buffer [100 mM NaPi, Sigma #S3139 and Sigma #S9390, 300 mM KCl, Sigma #P9333, 5 mM MgCl2 × 6 H2O, Sigma #M2670, 0.001% Brij35 Thermo Fisher Scientific, #28316, 2.5 mM dithiothreitol (DTT), Sigma #D0632, 2.5 mM EDTA, Sigma #EDS] supplemented with protease inhibitors (Roche, #5056489001) and deoxyribonuclease I (DNaseI) (Roche, #10104159001) was added to frozen SF21 cell pellets expressing an APC construct. The pellet was thawed in a room temperature water bath and resuspended. The lysate was clarified by centrifugation (184.000g, 45 min, 4°C), and the supernatant was applied to a 5-ml HiTrap immunoglobulin G Sepharose FF column (GE Healthcare, #28-9083-66). After washing with APC purification buffer, GST (glutathione S-transferase)–TEV protease was added to the column, and the column was left at 4°C overnight to cleave APC off its column-bound affinity and solubility tags. The next day, APC was eluted with APC purification buffer and labeled with SNAP-reactive dye (NEB #S9105S). After SNAP labeling, APC was concentrated using Vivaspin concentrators (Sartorius), ultracentrifuged (280,000g, 10 min, 4°C), and gel filtered using a Superose6 10/300 GL column (GE Healthcare). Peak fractions were pooled, and the labeling ratio was determined using NanoDrop (Thermo Fisher Scientific). The protein was aliquoted on ice and snap frozen in liquid nitrogen.
+ Open protocol
+ Expand
2

Purification and Labeling of APC-ARM Construct

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cold APC purification buffer (100 mM NaPi, Sigma #S3139 and Sigma #S9390, 300 mM KCl, Sigma #P9333, 5 mM MgCl2 × 6 H2O, Sigma #M2670, 0.001% Brij35 Thermo Fisher Scientific #28316, 2.5 mM DTT, Sigma #D0632, and 2.5 mM EDTA, Sigma #EDS) supplemented with protease inhibitors (Roche, #5056489001) and DNaseI (Roche, #10104159001) was added to frozen E. coli cell pellets expressing an APC-ARM construct. The pellet was thawed and resuspended. The lysate was clarified by centrifugation (184,000g, 45 min, 4°C), and the supernatant was applied to a StrepTrap column (GE Healthcare, 28-9075-48). The column was washed with APC purification buffer, and the protein was eluted in APC purification buffer supplemented with 10 mM d-desthiobiotin (Sigma, D1411-1G). Next day, the protein was incubated with 3C protease (Speed Biosystems, YCP1208) for 1 hour at 16°C. After SNAP labeling, the protein was concentrated and ultracentrifuged as described above and gel filtered using a GE Superdex200 10/300 column. Peak fractions were pooled, and the labeling ratio was determined using NanoDrop. The protein was aliquoted on ice and snap frozen in liquid nitrogen.
+ Open protocol
+ Expand
3

Glucose Mineral Medium for Shake Flasks

Check if the same lab product or an alternative is used in the 5 most similar protocols
The glucose mineral medium for shake flasks was prepared in milliQ-H2O (18.2 MΩ cm) by dissolving 11.2 g/l Na2HPO4–7H2O (S9390, Sigma-Aldrich), 3 g/l KH2PO4 (P5655, Sigma-Aldrich), 0.5 g/l NaCl (27810.295, VWR), 1 g/l NH4Cl (A9434, Sigma-Aldrich), 0.2465 g/l MgSO4–7H2O (M5921, Sigma-Aldrich), 4 g/l glucose (101176 K, VWR), 2 ml/l of a 50 mg/l CoCl2–6H2O solution (C8661, Sigma-Aldrich) and 2 ml/l medium of a trace element solution containing 10 g/l FeSO4–7H2O (F8633, Sigma-Aldrich), 2.25 g/l ZnSO4–7H2O (Z0251, Sigma-Aldrich), 2 g/l CaCl2–2H2O (223506, Sigma-Aldrich), 1 g/l CuSO4–5H2O (197722500, Fisher Scientific), 0.38 g/l MnCl2–4H2O (M5005, Sigma-Aldrich), 0.14 g/l H2BO3 (B6768, Sigma-Aldrich) and 0.1 g/l (NH4)6Mo7O24–4H2O (1011820250, Merck).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!