The largest database of trusted experimental protocols

0.8 na air objective

Manufactured by Zeiss

The 20× 0.8 NA air objective is a high-performance lens designed for microscopy applications. It has a numerical aperture of 0.8 and a magnification of 20×, which provides a balance between resolution and field of view. This objective is suitable for use in air-based microscopy techniques.

Automatically generated - may contain errors

2 protocols using 0.8 na air objective

1

Confocal Imaging and Quantitative Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells in 96-well plates were imaged using a Zeiss LSM780 AxioObserver Z1 confocal microscope and a Plan-APO 20× 0.8 NA air objective. Images were saved as raw .lsm files and exported to FIJI(ImageJ) for analysis including maximum intensity projections, threshold adjustment and fluorescence intensity quantifications. After thresholding, FIJI’s Analyze Particles function was used for quantifying integrated cell fluorescence. Background fluorescence was measured in five unique and non-overlapping areas for every image and averaged for obtaining the average background fluorescence for a given image. Corrected total cell fluorescence (CTCF) was calculated using the formula CTCF = Integrated Density – (Area of selected cell × mean fluorescence of background readings). Scatter dot pots were generated using GraphPad Prism. Images acquired from three independent replicate cultures were used for quantification and statistics were performed using a two-tailed, non-parametric t test with Mann-Whitney correction, p values were calculated and indicated for each comparison.
+ Open protocol
+ Expand
2

Coated Nanopatches Visualized by Confocal Microscopy

Check if the same lab product or an alternative is used in the 5 most similar protocols
Coated Nanopatches were visualised on a Zeiss 510 confocal microscope, using a 20 × 0.8 NA air objective (Zeiss). Dylight 647, 550 and 488 signals were acquired at 5 µm intervals with 1.28 µs pixel/dwell and 12-bit depth. All three channels were collected sequentially, using the following settings: red 633 helium neon laser with a HFT 458/543/633 splitter and filter BP 650–710; blue 488 argon laser with a HFT 488/KP700 and filter LP505; green 543 helium neon laser with a HFT 488/543 and meta detector set to 553–692 nm. Image analyses including 3D reconstruction of the images were performed with Imaris software x64 6.3.1 (Bitplane AG, Zurich, Switzerland).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!