Jsm 5510lv
The JSM-5510LV is a low-vacuum scanning electron microscope (SEM) designed for a wide range of imaging applications. It provides high-quality, high-resolution images of samples in a low-vacuum environment, allowing for the observation of non-conductive and hydrated specimens without the need for extensive sample preparation.
Lab products found in correlation
23 protocols using jsm 5510lv
Morphological Features of Aphid Hind Legs
Nanoemulgel Particle Characterization
Characterization of Adenine-Containing Aerogels
Detailed Microscopic Examination of Insect Morphology
Furthermore, to examine the detailed structures of the ventral surface and leg primordia of the tail ends, observations by scanning electron microscope (SEM) were also carried out. Juveniles in the late preparatory period and the rigidation period were fixed with FAA fixative (ethanol/formalin/acetic acid = 16:6:1) for longer than 24 h and preserved in 70% EtOH for observations by SEM. The samples were dehydrated in increasing concentrations of EtOH and dried using a critical point dryer (Samdri-PVT-3D; Tousimis, Rockville, MD, USA). Dried samples were then coated with gold ions with an E-1010 Ion Sputter (Hitachi, Tokyo, Japan). Ion-coated samples were observed by SEM (JSM-5510LV; JEOL, Tokyo, Japan).
Scanning Electron Microscopy and Atomic Force Microscopy Analysis
AFM images were recorded using a MultiMode atomic force microscope (NanoScope IIIa controller; Veeco). The stage was equipped with a video microscope to position the sample on the J scanner base. The samples were fixed to glass coverslips using sticky tabs over stainless steel sample holders. Before AFM analysis, the samples were observed on the metallic discs using a binocular GX reflective optical microscope equipped with a Motticam 2000 microscope digital camera. All images were recorded in tapping mode using TESP 15 series (HQ:NSC15/Al BS) sharpened silicon probes with nominal spring constant of 40 N m−1 and nominal resonance frequency of 325 kHz (μmasch). The scan rate was changed according to the size of the scan area and the features observed on the surface. The scans were analysed using NanoScope software version 6.13 (Veeco). Each height image was processed using the plane-fitting third-order and the flatten zero-order commands in the software. For the amplitude images, the plane-fitting zero-order command was performed.
Characterization of TPU/CIP Composites
Characterization of Printed Materials
Changes in Surface Roughness by Polishing
Hydrogel Cross-Section Morphology Analysis
Actinobacteria Spore Morphology Analysis
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!