Cytotox glo reagent
The CytoTox-Glo reagent is a luminescent assay that measures the number of dead cells in a cell population. It detects a protease marker released from dead cells, providing a quantitative measure of cytotoxicity.
Lab products found in correlation
11 protocols using cytotox glo reagent
Antibody-Mediated Complement-Dependent Cytotoxicity
Complement-Dependent Cytotoxicity Assay
Example 7
Cynomolgus cross-reactive clones were tested for the ability to induce complement-dependent cytotoxicity (CDC). MOLP-8 cells were plated at a density of 10,000 cells per well in a black 96-well flat-bottom tissue culture plate in 50 μL of complete media (RPMI supplemented with 10% fetal bovine serum). 50 μL of 2× anti-CD38 antibody, control IgG antibody, or media alone was added to each well and left to incubate at room temperature for 10 min. Varying amounts (2-15 μL) of purified rabbit complement (cat #CL 3441 Cedarlane Laboratories, Canada), depending upon the cell line was added to each well except control wells. After one hour incubation at 37° C., plates were brought to room temperature, 100 μL of cell titer CytoTox Glo™ reagent (Promega G7571/G7573) was added per well, the plate shaken for 5 to 7 min and luminescence read on an EnVision® (Perkin Elmer) luminescence plate reader. Conditions tested: cells alone; cells+complement; cells+IgG control+complement; cells+antibody+complement. % CDC was calculated using the following equation:
100−(RLUT/RLUC)×100),
where RLUT is the relative luminescence units of the test sample and RLUC is the relative luminescence units of the sample with complement alone. Statistical analysis was performed using PRISM software. EC50 values, as determined from plots of % CDC versus antibody concentration, are shown in Table 1.
Complement-Dependent Cytotoxicity Assay for Anti-CD38 Antibodies
Example 7
Cynomolgus cross-reactive clones were tested for the ability to induce complement-dependent cytotoxicity (CDC). MOLP-8 cells were plated at a density of 10,000 cells per well in a black 96-well flat-bottom tissue culture plate in 50 μL of complete media (RPMI supplemented with 10% fetal bovine serum). 50 μL of 2× anti-CD38 antibody, control IgG antibody, or media alone was added to each well and left to incubate at room temperature for 10 min. Varying amounts (2-15 μL) of purified rabbit complement (cat #CL 3441 Cedarlane Laboratories, Canada), depending upon the cell line was added to each well except control wells. After one hour incubation at 37° C., plates were brought to room temperature, 100 μL of cell titer CytoTox Glo™ reagent (Promega G7571/G7573) was added per well, the plate shaken for 5 to 7 min and luminescence read on an EnVision® (Perkin Elmer) luminescence plate reader. Conditions tested: cells alone; cells+complement; cells+IgG control+complement; cells+antibody+complement. % CDC was calculated using the following equation:
100−(RLUT/RLUC)×100),
where RLUT is the relative luminescence units of the test sample and RLUC is the relative luminescence units of the sample with complement alone. Statistical analysis was performed using PRISM software. EC50 values, as determined from plots of % CDC versus antibody concentration, are shown in Table 1.
Complement-Dependent Cytotoxicity Assay
Example 7
Cynomolgus cross-reactive clones were tested for the ability to induce complement-dependent cytotoxicity (CDC). MOLP-8 cells were plated at a density of 10,000 cells per well in a black 96-well flat-bottom tissue culture plate in 50 μL of complete media (RPMI supplemetned with 10% fetal bovine serum). 50 μL of 2× anti-CD38 antibody, control IgG antibody, or media alone was added to each well and left to incubate at room temperature for 10 min. Varying amounts (2-15 μL) of purified rabbit complement (cat #CL 3441 Cedarlane Laboratories, Canada), depending upon the cell line was added to each well except control wells. After one hour incubation at 37° C., plates were brought to room temperature, 100 μL of cell titer CytoTox Glo™ reagent (Promega G7571/G7573) was added per well, the plate shaken for 5 to 7 min and luminescence read on an EnVision® (Perkin Elmer) luminescence plate reader. Conditions tested: cells alone; cells+complement; cells+IgG control+complement; cells+antibody+complement. % CDC was calculated using the following equation:
100−(RLUT/RLUC)×100),
where RLUT is the relative luminescence units of the test sample and RLUC is the relative luminescence units of the sample with complement alone. Statistical analysis was performed using PRISM software. EC50 values, as determined from plots of % CDC versus antibody concentration, are shown in Table 1.
ADCC and CDC Activity Assay
Anti-GITR x Anti-C1q Antibody CDC Assay
Complement-Dependent Cytotoxicity Assay
Example 7
Cynomolgus cross-reactive clones were tested for the ability to induce complement-dependent cytotoxicity (CDC). MOLP-8 cells were plated at a density of 10,000 cells per well in a black 96-well flat-bottom tissue culture plate in 50 μL of complete media (RPMI supplemented with 10% fetal bovine serum). 50 μL of 2× anti-CD38 antibody, control IgG antibody, or media alone was added to each well and left to incubate at room temperature for 10 min. Varying amounts (2-15 μL) of purified rabbit complement (cat #CL 3441 Cedarlane Laboratories, Canada), depending upon the cell line was added to each well except control wells. After one hour incubation at 37° C., plates were brought to room temperature, 100 μL of cell titer CytoTox Glo™ reagent (Promega G7571/G7573) was added per well, the plate shaken for 5 to 7 min and luminescence read on an EnVision® (Perkin Elmer) luminescence plate reader. Conditions tested: cells alone; cells+complement; cells+IgG control+complement; cells+antibody+complement. % CDC was calculated using the following equation:
100−(RLUT/RLUC)×100),
where RLUT is the relative luminescence units of the test sample and RLUC is the relative luminescence units of the sample with complement alone. Statistical analysis was performed using PRISM software. EC50 values, as determined from plots of % CDC versus antibody concentration, are shown in Table 1.
MTT Viability, Apoptosis, and Cytotoxicity Assays
Alternatively, cells cultured in 24-well plates (2 cm diameter) were treated as indicated in each figure legend (concentration of drug and time). Media and trypsinized adherent cells were centrifuged and analyzed for annexin V binding (BD Bioscience, San Jose, CA, USA) and propidium iodide (BD Bioscience) staining as described by the manufacturer. Cells were analyzed by flow cytometry using the CytoFLEX (Beckman Coulter, Brea, CA, USA) and 10,000 independent events were analyzed using CytExpert software (Beckman Coulter).
Cytotoxicity assays were performed in 96-well white plates (Corning, Corning, NY, USA) using CytoTox-Glo reagent (Promega) according to the manufacturer’s instructions. Data are expressed as a fold change of mock-infected cells analyzed in parallel. Functional caspase assays were performed in 96-well white plates (Corning) using Caspase-Glo 9, 8, or 3/7 assays (Promega) according to the manufacturer’s instructions. Data are expressed as a fold change of mock-infected cells analyzed in parallel.
ADCC Assay with KVA Antibodies
Annexin V/PI Flow Cytometry Protocol
Alternatively, cytotoxicity assays were performed in 96-well white plates (Corning, Corning, NY, USA) using CytoTox-Glo reagent (Promega, Madison, WI, USA) according to the manufacturer’s instructions. Data are expressed as a fold change over mock-infected cells analyzed in parallel. Functional caspase assays were performed in 96-well white plates (Corning) using Caspase-Glo 9, 8, or 3/7 assays (Promega) according to the manufacturer’s instructions. Data are expressed as a fold change over mock-infected cells analyzed in parallel.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!