The largest database of trusted experimental protocols

Waters uplc tqd mass spectrometer instrument

Manufactured by Waters Corporation
Sourced in United States

The Waters UPLC-TQD Mass Spectrometer is an analytical instrument designed for the detection and quantification of chemical compounds. It combines a Ultra Performance Liquid Chromatography (UPLC) system with a triple quadrupole (TQD) mass spectrometer. The core function of this instrument is to separate, identify and measure the concentration of various substances in a given sample.

Automatically generated - may contain errors

2 protocols using waters uplc tqd mass spectrometer instrument

1

Synthesis and Characterization of Pyrazoline Derivatives

Check if the same lab product or an alternative is used in the 5 most similar protocols
IR spectra were recorded on Bruker FT-IR, ALPHA-T (Eco-ATR) spectrophotometers, (Bruker Corporation., USA) and the values are expressed in cm-1. 3220 (N-H stretch), 2865 (C-H Aromatic), 1650 (C=N stretch), 1515 (C-H deform), 1159, 1350 (sym., asym S(=O)2 stretch). 1H-NMR and 13C-NMR spectra were recorded on Bruker Avance-400, FTNMR spectrometer (Bruker, Tech. Pvt. Ltd., USA) at 400MHz and the chemical shifts are reported in parts per million (δ value), taking TMS (δ 0 ppm for 1H NMR) as the internal standard: 2.03-2.09 (dd, Jab: 16.77 Hz, Jax: 3.58 Hz, 1H, Ha), 2.73-2.78 (dd, Jab: 3.85 Hz, Jbx: 17.11 Hz, 1H, Hb), 3.81-3.93 (dd, Jax: 3.50 Hz, Jbx: 17.05 Hz, 1H, Hx), 3.97-4.10 (m, 6H, methyl), 5.23-5.25 (s, 1H, Ar-OH), 6.56-7.90 (m, 11H, Ar). 13C NMR (DMSO, ppm): 37.9 (CH2 pyrazoline), 43.0 (CH pyrazoline), 113.8-146.3 (12CH benzene), 147.5-159.2 (7C benzene), 160.1 (C pyrazoline). Mass spectra were recorded on Waters UPLC-TQD Mass Spectrometer instrument (Waters Corporation, USA) using LC-ESI or APCI-MS Technique; MS (m/z): 473 (M+, 100 %). Elemental analysis was performed on Perkin Elmer-2400, Series-II Analyzer (Waltham, Massachusetts, USA). Anal. Calcd. for C23H21ClN2O5S: C, 58.41; H, 4.48; N, 5.92. Found: C, 58.39; H, 4.50; N, 5.89.
+ Open protocol
+ Expand
2

Microwave-Assisted Organic Synthesis Protocols

Check if the same lab product or an alternative is used in the 5 most similar protocols
The chemicals and reagents for synthesis were procured from S. D. Fine Chemicals and Sigma Aldrich, Mumbai, India and the pre-coated TLC sheets were obtained from Merck Chemicals, India and were used as such. Reagent grade solvents were used and were purified and dried by standard methods. Raga's Scientific Microwave System (Ragatech, Pune, Maharashtra, India) was used for the microwave assisted organic synthesis (MAOS). Melting points were determined by open capillary method and are uncorrected. IR spectra were recorded on Bruker FT-IR, ALPHA-T (Eco-ATR) spectrophotometers, (Bruker Corporation, USA) and the values are expressed in cm-1. 1H-NMR and 13C-NMR spectra were recorded on Bruker Avance-400, FTNMR spectrometer (Bruker, Tech. Pvt. Ltd., USA) at 400 MHz and the chemical shifts are reported in parts per million (δ value), taking TMS (δ 0 ppm for 1H NMR) as the internal standard. Mass spectra were recorded on Waters UPLC-TQD Mass Spectrometer instrument (Waters Corporation, USA) using LC-ESI or APCI-MS Technique. Elemental analysis was performed on Perkin Elmer-2400, Series-II Analyzer (Waltham, Massachusetts, USA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!