The largest database of trusted experimental protocols

Anti st2

Manufactured by Thermo Fisher Scientific
Sourced in United States

Anti-ST2 is a laboratory equipment product used for the detection and quantification of the ST2 protein. ST2 is a member of the interleukin-1 receptor family and serves as a biomarker for various cardiovascular and inflammatory conditions. The Anti-ST2 product provides a reliable and accurate method for analyzing ST2 levels in biological samples.

Automatically generated - may contain errors

3 protocols using anti st2

1

Detecting Lung ILC2s and Eosinophil CD69 Expression

Check if the same lab product or an alternative is used in the 5 most similar protocols
To detect type 2 innate lymphoid cells (ILC2s) in the lung, cells were washed with ice-cold fluorescence-activated cell sorter (FACS) buffer (PBS containing 1% bovine serum albumin (BSA) and 1 mM EDTA), fixed in 4% paraformaldehyde, and subsequently stained with the following antibodies for 30 min at RT: anti-lineage marker cocktail (BD Biosciences), anti-CD45 (BioLegend, San Diego, CA, USA), anti-CD25 (eBioscience), anti-CD90.2 (eBioscience), anti-ST2 (eBioscience), anti-IL-5 (eBioscience) and anti-IL-13 (eBioscience). To stain for cellular CD69 in human eosinophils, the cells were stained with FITC-conjugated anti-CD69 (BioLegend) antibodies or isotype controls (BioLegend). The cells were analyzed using a FACS Canto II flow cytometer (BD Biosciences). The data were analyzed by FlowJo software version 10.6.0 (FlowJo).
+ Open protocol
+ Expand
2

Stromal Vascular Fraction Flow Cytometry

Check if the same lab product or an alternative is used in the 5 most similar protocols
The suspended SVFs from adipose depots of 10-wk-old male mice were fixed, blocked, and stained with conjugated antibodies, including anti-CD45, anti-Siglec-5, anti-CD11b, and anti-CD206 (eBioscience and BioLegend), to identify macrophage subsets. To detect ILC2s (CD45+LinCD90.2+ST2+), SVF cells were incubated with conjugated anti-CD45, anti-Lin (CD3e, CD11b, B220, CD11c, and Gr-1), anti-CD90.2, and anti-ST2 (eBioscience and BioLegend) after fixation unless specified otherwise. In Fig. S1 D, we used additional markers, including anti-RORC and anti-GATA3 (eBioscience), to gate ILC2s (CD45+LinCD90.2+RORCST2+GATA3+). Anti-AMPK α 1 (phospho-T183) and AMPK α 2 (phospho-T172) antibody (ab23875; Abcam), eFluor 660–conjugated anti-phospho-IκBα (S32/S36; eBioscience), and PE-conjugated phospho-IKKα/β (Ser176/180; Cell Signaling) were used to detect phospho-AMPK, phospho-IκBα and phospho-IKK in ILC2. For the staining of GATA3, RORC and phosphorylated proteins, cells were permeabilized with 0.25% Triton X-100 for 20 min after fixation. FACS analysis was performed on a FACS Calibur (BD PharMingen), and the data were analyzed with FlowJo software as described previously (Dong et al., 2013 (link)). The gating strategy used for ILC2s, eosinophils, and macrophages in adipose tissue is shown in Fig. S3, I–K.
+ Open protocol
+ Expand
3

Lung and Tumor Immune Cell Isolation

Check if the same lab product or an alternative is used in the 5 most similar protocols
Lymphocytes were isolated from lung and tumor tissue by digestion with collagenase A (1 mg/ml; Roche) and DNase I (0.5 µg/ml; Roche) in isolation buffer (RPMI 1640 supplemented with 5% FBS, 1% l-glutamine, 1% penicillin-streptomycin, and 10 mM Hepes) for 30 min at 37°C. Cells were filtered through 100-µm cell strainers, washed in isolation buffer, and stained in PBS supplemented with 0.25% BSA, 2 mM EDTA, and 0.1% sodium azide. Antibodies used included anti-CD45, anti-Foxp3, anti–IL-18Rα, anti-ST2, anti-CD62L, anti-CD103, anti–PD-1, anti-GITR, anti–CTLA-4, anti-KLRG1, anti-Ki67, anti-CD5, anti-NK1.1, anti-CD45R (B220), anti–IL-17, anti–IL-4, anti-IFNγ, and anti–Ly-6C (eBioscience); anti-TCRβ, anti-CD3, anti-CD4, anti-CD8, anti-CD127, anti-CD11B, anti-MHCII, and anti-Gr1 (BioLegend); anti-CD44 and anti-CD25 (Tonbo); anti–IL-5 and anti-TNFα (BD PharMingen); and anti-AREG (R&D Systems). For exclusion of dead cells, samples were first stained with Ghost Dye (Tonbo) cell viability reagent. Intracellular staining for cytokines, Foxp3, AREG, Ki-67, and CTLA-4 was performed using the Foxp3/transcription factor staining buffer set (eBioscience) as per manufacturer’s protocol. The H2-Kb OVA257–264 tetramer was obtained from the NIH Tetramer Core Facility.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!