The largest database of trusted experimental protocols

21 protocols using fortessa x 50

1

Comparative Analysis of Hinge-Notch Variants

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 17

This Example describes experiments performed to compare activation of Hinge-Notch variants with different promoters and STS domains. For testing, 1×105 double positive T-cells expressing anti-CD19 receptors were co-cultured with no additions (top trace), 1×105 ALPPL2+ K562 cells (second trace from top), 1×105 CD19+ K562 cells (third trace from top), or 1×105 ALPPL2+ CD19+ K562 cells (bottom trace) (FIG. 12). Transcriptional activation of an inducible BFP reporter gene was subsequently measured using a Fortessa X-50 (BD Biosciences). Activation using murine and human original synNotch constructs were included for comparison.

+ Open protocol
+ Expand
2

Enhancing CAR-T Cell Viability

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 23

This Example describes experiments performed to demonstrate that ligand-triggered expression of super-IL2 improves cell viability of CAR-T cells.

1×105 double positive T-cells expressing anti-CD19 Hinge-Notch Notch1 STS receptors were co-cultured in media without IL-2, with no K562 cells (top left), with CD19+ K562 cells to trigger Hinge-Notch (top right), with MCAM+ K562 cells to trigger CAR activation (bottom left) or with MCAM+ and CD19+ K562 cells to trigger activation of both receptors (bottom right) (FIG. 16). After 9 days the proportion of live T cells by forward and side-scatter measurements using a Fortessa X-50 (BD Biosciences) was assessed. Co-activation of both receptors resulted in the most viable cells, followed by Hinge-Notch activation (and subsequent super-IL2 induction), CAR activation alone, and no activation of either receptor.

+ Open protocol
+ Expand
3

Lentiviral Hinge-Notch Receptor Control of T-cell Activation

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 29

This Example describes experiments performed for testing single lentiviral vector constructs containing Hinge-Notch receptors for control of T cell activation and exhaustion.

Primary human T-cells were activated with anti-CD3/anti-CD28 Dynabeads (Gibco) and transduced with a single lentiviral construct containing constitutively expressed Hinge-Notch receptors with an inducible anti-MCAM CAR cassette under Gal4-UAS control. Cells were sorted for Hinge-Notch receptor expression via myc-tag on Day 5 post initial T-cell stimulation and expanded further for activation testing. Three STS-variants were tested as indicated, with constitutively expressed CAR used as a control. For testing, 1×105 T-cells expressing anti-CD19 receptors were co-cultured with 5×104 CD19+ K562 cells. Transcriptional activation of the inducible CAR was subsequently measured by a GFP tag using a Fortessa X-50 (BD Biosciences) (the left most panel of FIG. 22). T cell activation and exhaustion were measure by expression of CD25 and CD39, respectively (FIG. 22).

+ Open protocol
+ Expand
4

Dual Antigen Target Cell Killing

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 28

This Example describes experiments performed to demonstrate specific dual antigen target cell killing by T cells engineered with a single lentivector containing a HingeNotch CAR circuit.

Primary human T-cells were activated with anti-CD3/anti-CD28 Dynabeads (Gibco) and transduced with a single lentiviral construct containing constitutively expressed HingeNotch-receptors with an inducible anti-MCAM CAR cassette under Gal4-UAS control. Cells were sorted for Hinge-Notch receptor expression via myc-tag on Day 5 post initial T-cell stimulation and expanded further for activation testing. Three STS-variants were tested as indicated, with constitutively expressed CAR used as a control. For testing, 1×105 T-cells expressing anti-CD19 receptors were co-cultured with 5×105 MCAM+ K562 cells or 5×104 MCAM+ CD19+ K562 cells. Target cell killing was assessed by forward/side-scatter of the K562 population using a Fortessa X-50 (BD Biosciences). As shown in FIG. 21, Hinge-Notch circuits effectively and specifically clear target cells containing both MCAM+ and CD19+ antigens.

+ Open protocol
+ Expand
5

Flowcytometric Analysis and FACS of NHP and Human Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Antibodies used for flowcytometric analysis and FACS (fluorescence-activated cell sorting) of NHP and human cells are listed in Supplementary Table E2. Dead cells and debris were excluded via FSC/SSC gating. Flow cytometric analysis was performed on an LSR IIu (BD, Franklin Lakes, NJ), Fortessa X50 (BD) and FACSAria IIu (BD). Cells for in vitro assays were sorted using a FACSAria IIu cell sorter (BD).
+ Open protocol
+ Expand
6

Tunable T cell proliferation with Hinge-Notch

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 24

This Example describes experiments performed to demonstrate tunable proliferation of T cells with STS-variants of Hinge-Notch.

Primary human T-cells were activated with anti-CD3/anti-CD28 Dynabeads (Gibco) and transduced with two lentiviral constructs, one expressing a CAR against the MCAM antigen, and one expressing a Hinge-Notch receptor with inducible super-IL2 under Gal4-UAS control (the right four panels of FIG. 17). Hinge-Notch receptors containing 3 different STS variants (NRG1, Notch1, Notch2) were tested against a no Hinge-Notch control. Similarly, primary human T-cells were generated without CAR expression (left panels of FIG. 17). T cells were stained with CellTrace Violet (Invitrogen) according to manufacturer's protocols, co-incubated with CD19+ K562 target cells in media without IL-2 and measured using a Fortessa X-50 (BD Biosciences) at the indicated timepoints to assess proliferation by CTV signal decay.

+ Open protocol
+ Expand
7

Comparative Analysis of Hinge-Notch Variants

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 17

This Example describes experiments performed to compare activation of Hinge-Notch variants with different promoters and STS domains. For testing, 1×105 double positive T-cells expressing anti-CD19 receptors were co-cultured with no additions (top trace), 1×105 ALPPL2+ K562 cells (second trace from top), 1×105 CD19+ K562 cells (third trace from top), or 1×105 ALPPL2+ CD19+ K562 cells (bottom trace) (FIG. 12). Transcriptional activation of an inducible BFP reporter gene was subsequently measured using a Fortessa X-50 (BD Biosciences). Activation using murine and human original synNotch constructs were included for comparison.

+ Open protocol
+ Expand
8

Dual Antigen Target Cell Killing by Engineered T Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 28

This Example describes experiments performed to demonstrate specific dual antigen target cell killing by T cells engineered with a single lentivector containing a HingeNotch CAR circuit.

Primary human T-cells were activated with anti-CD3/anti-CD28 Dynabeads (Gibco) and transduced with a single lentiviral construct containing constitutively expressed HingeNotch-receptors with an inducible anti-MCAM CAR cassette under Gal4-UAS control. Cells were sorted for Hinge-Notch receptor expression via myc-tag on Day 5 post initial T-cell stimulation and expanded further for activation testing. Three STS-variants were tested as indicated, with constitutively expressed CAR used as a control. For testing, 1×105 T-cells expressing anti-CD19 receptors were co-cultured with 5×10 MCAM+ K562 cells or 5×104 MCAM+ CD19+ K562 cells. Target cell killing was assessed by forward/side-scatter of the K562 population using a Fortessa X-50 (BD Biosciences). As shown in FIG. 21, Hinge-Notch circuits effectively and specifically clear target cells containing both MCAM+ and CD19+ antigens.

+ Open protocol
+ Expand
9

Hinge-Notch Receptor CAR T-cell Evaluation

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 27

This Example describes experiments performed to test single lentiviral vector constructs containing Hinge-Notch receptors CAR circuits.

Primary human T-cells were activated with anti-CD3/anti-CD28 Dynabeads (Gibco) and transduced with a single lentiviral construct containing constitutively expressed Hinge-Notch receptors with an inducible anti-MCAM CAR cassette under Gal4-UAS control. Cells were sorted for Hinge-Notch receptor expression via myc-tag on Day 5 post initial T-cell stimulation and expanded further for activation testing. Three STS-variants were tested as indicated, with constitutively expressed CAR used as a control (FIG. 20). For testing, 1×105 T cells expressing anti-CD19 receptors were co-cultured with: no additions (upper trace), 5×105 K562 cells (middle trace), or 5×104 CD19+ K562 cells (lower trace). Transcriptional activation of the inducible CAR was subsequently measured by a GFP tag using a Fortessa X-50 (BD Biosciences).

+ Open protocol
+ Expand
10

Enhancing CAR-T Cell Viability through Dual Receptor Activation

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 23

This Example describes experiments performed to demonstrate that ligand-triggered expression of super-IL2 improves cell viability of CAR-T cells.

1×105 double positive T-cells expressing anti-CD19 Hinge-Notch Notch1 STS receptors were co-cultured in media without IL-2, with no K562 cells (top left), with CD19+K562 cells to trigger Hinge-Notch (top right), with MCAM+ K562 cells to trigger CAR activation (bottom left) or with MCAM+ and CD19+ K562 cells to trigger activation of both receptors (bottom right) (FIG. 16). After 9 days the proportion of live T cells by forward and side-scatter measurements using a Fortessa X-50 (BD Biosciences) was assessed. Co-activation of both receptors resulted in the most viable cells, followed by Hinge-Notch activation (and subsequent super-IL2 induction), CAR activation alone, and no activation of either receptor.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!