The largest database of trusted experimental protocols

Neurobasal b27 l glutamine containing medium nb b27

Manufactured by Thermo Fisher Scientific

Neurobasal/B27/L-glutamine-containing medium (NB/B27) is a specialized cell culture medium designed to support the growth and maintenance of neuronal cells. It provides a chemically-defined, serum-free environment optimized for the in vitro culture of neurons.

Automatically generated - may contain errors

3 protocols using neurobasal b27 l glutamine containing medium nb b27

1

Differentiation of iPSCs into Midbrain Dopaminergic Neurons

Check if the same lab product or an alternative is used in the 5 most similar protocols
A modified dual-SMAD inhibition protocol was used to direct cells towards floor plate-based mDA neurons3 (link),5 (link). At day 30 of differentiation, cells were replated on dishes pre-coated with polyornithine (PO; 15 µg mL−1)/ laminin (1 µg mL−1)/ fibronectin (2 µg mL−1) in Neurobasal/B27/L-glutamine-containing medium (NB/B27; Life Technologies) supplemented with 10 µM Y-27632 (until day 32) and with BDNF (brain-derived neurotrophic factor, 20 ng mL−1; R&D), ascorbic acid (AA; 0.2 mM, Sigma), GDNF (glial cell line derived neurotrophic factor, 20 ng mL−1; R&D), dibutyryl cAMP (0.5 mM; Sigma), TGFβ3 (transforming growth factor type β3, 1 ng mL−1; R&D), and DAPT (10 nM; Tocris). Two days after plating, cells were treated with 1 µg mL−1 mitomycin C (Tocris) for 1 h to kill any remaining proliferative contaminants. iPSC-derived mDA neurons were fed every 2 to 3 days and maintained without passaging until they were assayed at day 65. To prevent neurons from lifting off, laminin and fibronectin were supplemented into the media every 7–10 days.
+ Open protocol
+ Expand
2

Differentiation of hESCs into midbrain dopaminergic neurons

Check if the same lab product or an alternative is used in the 5 most similar protocols
Human embryonic stem cells (hESCs) were differentiated with a modified dual-SMAD inhibition protocol towards floor plate-based midbrain dopaminergic (mDA) neurons as described previously33 (link). hESCs were maintained on mouse embryonic fibroblasts and passaged with Dispase (STEMCELL Technologies). For each differentiation, hESCs were harvested with Accutase (Innovative Cell Technology). At day 30 of differentiation, hESC-derived mDA neurons were replated and maintained on dishes precoated with polyornithine (PO; 15 μg ml−1), laminin (1 μg ml−1), and fibronectin (2 μg ml−1) in Neurobasal/ B27/l-glutamine-containing medium (NB/B27; Life Technologies) supplemented with 10 μM Y-27632 (until day 32) and with BDNF (brain-derived neurotrophic factor, 20 ng ml−1; R&D), ascorbic acid (AA; 0.2 mM, Sigma), GDNF (glial cell line-derived neurotrophic factor, 20 ng ml−1; R&D), TGFβ 3 (transforming growth factor type β 3, 1 ng ml−1; R&D), dibutyryl cAMP (0.5 mM; Sigma), and DAPT (10 nM; Tocris). Two days after replating, mDA neurons were treated with 1 μg ml−1 mitomycin C (Tocris) for 1 h to kill any remaining non-post mitotic contaminants. Assays were performed at day 65 of neuron differentiation.
+ Open protocol
+ Expand
3

Differentiation of hESCs into midbrain dopaminergic neurons

Check if the same lab product or an alternative is used in the 5 most similar protocols
Human embryonic stem cells (hESCs) were differentiated with a modified dual-SMAD inhibition protocol towards floor plate-based midbrain dopaminergic (mDA) neurons as described previously64 (link). Briefly, hESCs were maintained on mouse embryonic fibroblasts and passaged with Dispase (STEMCELL Technologies). For each differentiation, hESCs were harvested with Accutase (Innovative Cell Technology). At day 30 of differentiation, hESC-derived mDA neurons were replated and maintained on dishes precoated with polyornithine (PO; 15 μg mL−1), Laminin (1 μg mL−1), and Fibronectin (2 μg mL−1) in Neurobasal/B27/L-glutamine-containing medium (NB/B27; Life Technologies) supplemented with 10 μM Y-27632 (until day 32) and with brain-derived neurotrophic factor (BDNF; 20 ng mL−1; R&D), ascorbic acid (AA; 0.2 mM, Sigma), glial cell line-derived neurotrophic factor (GDNF; 20 ng mL−1; R&D), transforming growth factor type β3 (TGFβ3; 1 ng mL−1; R&D), dibutyryl cAMP (0.5 mM; Sigma), and DAPT (10 nM; Tocris). Two days after replating, mDA neurons were treated with 1 μg mL−1 mitomycin C (Tocris) for 1 h to kill any remaining non-post mitotic contaminants. Toxicity assays were performed at 65 days of neuron differentiation. PU-AD was added to the cells for 72 h and the CellTiter-Glo Luminescent Cell Viability Assay (Promega) assay was performed according to the manufacturer’s indications.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!