Ketamine-xylazine solution consisted of 80 μL (4 mg) Ketamine plus 20 μL (0.2 mg) xylazine and stored at 4 °C for a maximum of 2 weeks. The solution was diluted 1:10 with dH2O immediately prior to use. Mice were injected intraperitoneally with 10 μL/g (40 μg/g Ketamine +2 μg/g xylazine) before inoculation and other surgical procedures. Adequate sedation was confirmed before intranasal inoculations by the absence of footpad reflexes. Mice were held in a supine position (at a 45° angle) with the back supported by the palm and the neck skin fold by the thumb and index finger. The inoculum was slowly released from a 10-μL micropipette as two small drops covering the two nostrils. The mice were allowed to inhale the volume without forming bubbles. They were then maintained in the same position until they regained consciousness and their rapid breathing returned to normal.
Sirolimus
Sirolimus is a laboratory reagent used for research purposes. It is a macrocyclic lactone compound that functions as an immunosuppressant by inhibiting the mammalian target of rapamycin (mTOR) pathway. Sirolimus is commonly used in scientific research to study cell growth, proliferation, and signaling mechanisms.
Lab products found in correlation
2 protocols using sirolimus
Intranasal inoculation of mice under anesthesia
Ketamine-xylazine solution consisted of 80 μL (4 mg) Ketamine plus 20 μL (0.2 mg) xylazine and stored at 4 °C for a maximum of 2 weeks. The solution was diluted 1:10 with dH2O immediately prior to use. Mice were injected intraperitoneally with 10 μL/g (40 μg/g Ketamine +2 μg/g xylazine) before inoculation and other surgical procedures. Adequate sedation was confirmed before intranasal inoculations by the absence of footpad reflexes. Mice were held in a supine position (at a 45° angle) with the back supported by the palm and the neck skin fold by the thumb and index finger. The inoculum was slowly released from a 10-μL micropipette as two small drops covering the two nostrils. The mice were allowed to inhale the volume without forming bubbles. They were then maintained in the same position until they regained consciousness and their rapid breathing returned to normal.
Evaluating Chemotherapeutic Effects on PSOs
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!