The largest database of trusted experimental protocols

Nanoscope iva

Manufactured by Digital Instruments

The Nanoscope IVa is a scanning probe microscope system designed for high-resolution imaging and characterization of surfaces at the nanoscale. It utilizes atomic force microscopy (AFM) technology to provide detailed topographical information about the sample surface.

Automatically generated - may contain errors

5 protocols using nanoscope iva

1

Characterization of GaN Epitaxial Growth

Check if the same lab product or an alternative is used in the 5 most similar protocols
Field emission scanning electron microscopy (FESEM, Hitachi S-4800) was used to observe the surface morphology of CGH on sapphire substrate, initial stage of GaN buffer layer on CGH/sapphire, and the following un-doped GaN epilayer grown on them, respectively. To understand the growth mechanism of GaN buffer layer, Raman mapping measurements (NT-MDT, Russia) of RBM of CNT and A1 (LO) mode of GaN from the GaN buffer layer on CGH/sapphire were performed. The surface topography of GaN layer on CGH/sapphire and on sapphire was probed by atomic force microscope (AFM, Digital Instruments, Nanoscope IV A) in tapping mode. Both samples of GaN layer grown with and without CGH were measured by X-ray diffraction (XRD, X'pert-MRD) with scan rate of 2 degree/min from 20 to 80 degree to compare the crystalline quality. Raman spectroscopy (Renishaw) using 514 nm-line of an Ar-ion laser and photoluminescence (PL) with a 325 nm-line of a He-Cd laser were used to examine the crystalline quality and the residual strain of GaN layer grown on sapphire and on CGH/sapphire. Current-Voltage (I-V) and electroluminescence (EL) measurements on the LED chips were carried out using a probe station system.
+ Open protocol
+ Expand
2

Surface Wettability of PMAn Films

Check if the same lab product or an alternative is used in the 5 most similar protocols
Surface wettability of the PMAn films through photo-reaction was investigated by water (DI) drop contact angle measurement. PMAn films were illuminated by high intensity UV source for 1, 3, 5, 10 mins. For surface morphology experiments, the polymer films on silicon wafer were illuminated by a high-intensity UV source for 15 min through a 10 μm line pattered photomask. AFM analyses were carried out at room temperature with a Dimension 3100 SPM equipped with Nanoscope IVa devised by Digital Instruments from Santa Barbara, CA. The AFM tip was oscillated at its resonance frequency (75 kHz). Next, the tip was lifted with fixed distance above the sample surface and scanned at that constant height with a voltage applied.
+ Open protocol
+ Expand
3

Polymer Characterization and Biomedical Applications

Check if the same lab product or an alternative is used in the 5 most similar protocols
1H spectrum was determined on a Bruker ARX-300 spectrometer. The average molecular weight of the polymer was characterized by a gel permeation chromatography (GPC) (model: Waters R-401 ALC/GPC) with THF as an eluent and polystyrene standard for calibration. Fluorescence spectra were obtained with a luminescence spectrometer (PerkinElmer, Model LS55) under excitation at 370 nm. The polymer films were illuminated with a UV lamp (Rolence Enterprise, Inc., Taiwan, power: 13.05 mW/cm2), model POWERARC UV 100. The surface wettability was investigated by a water (DI) drop contact angle measurement using Contact Angle Meter-CAM 101 model (KSV Instruments Ltd, FINLAND). AFM analysis was carried out in room temperature with a Dimension 3100 SPM equipped with Nanoscope IVa devised by Digital Instruments from Santa Barbara, CA. The fluorescent patterns such as were imaged under Olympus-BX51 fluorescence microscope with WB – dichroic mirror DM500, excitation filter BP450-480 and barrier filter BA515. The optical MSCs patterns were obtained from Olympus inverted research microscope model IX71. To detect cell patterns more in detail, MSCs were observed with field emission-scanning electron microscope (HITACHI S-800, Tokyo, Japan) and the picture was taken by scanning microscope image analysis system (ESCAN-4000, Bummi Universe, Tokyo, Japan)
+ Open protocol
+ Expand
4

Atomic Force Microscopy of Amyloid Fibrils

Check if the same lab product or an alternative is used in the 5 most similar protocols
AFM was performed on a Digital Instruments Nanoscope IVa instrument in tapping mode. Various samples that were monitored for changes in Thio-T fluorescence were applied onto freshly cleaved mica and incubated for 1 h at room temperature to deposit fibrillar and aggregated samples. After rinsing the samples with Milli-Q, the sample was allowed to dry at room temperature in air before measurement. The height of the fibrils observed in each sample was measured; the values represent an average of six different measurements, with standard errors.
+ Open protocol
+ Expand
5

Morphology and Characterization of Optoelectronic Devices

Check if the same lab product or an alternative is used in the 5 most similar protocols
The surface morphology of the constituent layers was analysed using tapping-mode AFM (Nanoscope Iva, Digital Instruments) in height and phase contrast. Cross-sectional view of the device was obtained using focused-ion-beam transmission electron microscopy (FIBTEM) (JIB-4,601F, JEOL). The luminance and EL spectra of the devices were obtained using a spectroradiometer (Konica CS 2,000). The current-voltage-luminance (I-V-L) characteristics of the devices were measured with a multichannel precision alternating-current power analyzer (ZIMMER Electronics Systems LMG 500). All measurements were performed in a dark box under ambient conditions in air.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!