1H NMR spectra were obtained using a Bruker Avance 400 MHz instrument (Switzerland). CDCl3 was used as the solvent. The mean particle size and ζ-potential of micellar aggregates were determined by dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS90 (Malvern, UK). DLS samples (micelles with/without DOX-loaded) were prepared in water, and was filtered using a 0.22 μm Nylon Syringe Filter prior to the measurements. The molecular weight distribution was determined by gel permeation chromatography (GPC) equipped with a 1260 Infinity Isocratic Pump and an RI detector (Agilent, US). DMF containing 0.1 mol% LiBr was the elute and the flow rate was 1.0 mL/min. Linear poly(methyl methacrylate) standards from Fluka were used for calibration. FT-IR spectra were recorded in ATR mode (Golden gate) on a Tensor 27 Bruker spectrometer (Germany). The particles were imaged using a Tecnai G2 F20 TWIN transmission electron microscope operated at 200 kV and equipped with a field-emission gun (FEI, Netherland). The sample was placed onto a Quantifoil grid, followed by utilizing Vitrobot, and then flash frozen in liquid ethane. The images were recorded at magnification of 14,500 and 25,000 with a 4 K * 4 K eagle CCD camera and defocus ranging from 2 to 3 μm. Confocal images of the samples were taken using the Leica TCS SP5 (Germany).
Avance 400 mhz instrument
The Avance 400 MHz instrument is a nuclear magnetic resonance (NMR) spectrometer manufactured by Bruker. It operates at a magnetic field strength of 400 MHz for the 1H nucleus. The core function of the Avance 400 MHz instrument is to perform high-resolution NMR spectroscopy for the analysis and characterization of chemical compounds.
Lab products found in correlation
14 protocols using avance 400 mhz instrument
Characterization of Micellar Nanoparticles for Drug Delivery
1H NMR spectra were obtained using a Bruker Avance 400 MHz instrument (Switzerland). CDCl3 was used as the solvent. The mean particle size and ζ-potential of micellar aggregates were determined by dynamic light scattering (DLS) using a Malvern Zetasizer Nano ZS90 (Malvern, UK). DLS samples (micelles with/without DOX-loaded) were prepared in water, and was filtered using a 0.22 μm Nylon Syringe Filter prior to the measurements. The molecular weight distribution was determined by gel permeation chromatography (GPC) equipped with a 1260 Infinity Isocratic Pump and an RI detector (Agilent, US). DMF containing 0.1 mol% LiBr was the elute and the flow rate was 1.0 mL/min. Linear poly(methyl methacrylate) standards from Fluka were used for calibration. FT-IR spectra were recorded in ATR mode (Golden gate) on a Tensor 27 Bruker spectrometer (Germany). The particles were imaged using a Tecnai G2 F20 TWIN transmission electron microscope operated at 200 kV and equipped with a field-emission gun (FEI, Netherland). The sample was placed onto a Quantifoil grid, followed by utilizing Vitrobot, and then flash frozen in liquid ethane. The images were recorded at magnification of 14,500 and 25,000 with a 4 K * 4 K eagle CCD camera and defocus ranging from 2 to 3 μm. Confocal images of the samples were taken using the Leica TCS SP5 (Germany).
Characterization of Compounds 1-4 by MS and NMR
Fluorescent Labeling of Amphiphilic Proteins
HILIC-HRMS Metabolite Quantification
Microwave-Assisted Organic Synthesis Protocols
Spectroscopic Analysis and Purification Methods
Spectroscopic Analysis of Chemical Compounds
Spectroscopic Analysis of Organic Compounds
Spectroscopic Analysis of Chemical Compounds
General Analytical Procedures for Organic Compounds
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!