The largest database of trusted experimental protocols

Lab on a chip technology

Manufactured by Agilent Technologies
Sourced in France

Lab-on-a-chip technology is a microfluidic device that integrates one or more laboratory functions on a single chip. It is designed to manipulate small volumes of fluids, enabling the performance of complex biochemical analyses in a compact, automated, and cost-effective manner.

Automatically generated - may contain errors

2 protocols using lab on a chip technology

1

Protein Identification from 2D Gels

Check if the same lab product or an alternative is used in the 5 most similar protocols
Spots of interest were excised from 2D gels and washed several times with water and dried for a few minutes. Trypsin digestion was performed overnight with a dedicated automated system (MultiPROBE II, Perkin-Elmer). The gel fragments were subsequently incubated twice for 15 min in a 0.1% CH3CN solution in water to allow extraction of peptides from the gel pieces. Peptide extracts were then dried and dissolved in starting buffer for chromatographic elution, consisting of 3% CH3CN and 0.1% HCOOH in water. Peptides were enriched and separated using lab–on–a–chip technology (Agilent, Massy, France) and fragmented using an on–line XCT mass spectrometer (Agilent). The ESI LC–MS/MS data were converted into DTA– format files that were further searched for proteins with MASCOT Daemon (Matrix Science [40] ). For protein identification, two strategies were employed to mine the maximum data. Measured peptides were searched in the NCBI nr–protein sequence database, viridiplantae (green plants [41] ), and in the Brassica EST database (Brassica Genome Gateway 2007, [42] ). Proteins with two or more unique peptides matching the protein sequence with a score >53, as defined by MASCOT, were considered as a positive identification. The spectra of each peptide were verified manually. In cases where protein identification data were lacking, BLAST analysis was performed [43] .
+ Open protocol
+ Expand
2

Peptide Identification in C. jejuni

Check if the same lab product or an alternative is used in the 5 most similar protocols
The peptides were enriched and separated using a lab-on-a-chip technology (Agilent, Massy, France) and fragmented using an on-line XCT mass spectrometer (Agilent). The fragmentation data were interpreted using the Data Analysis program (version 3.4, Bruker Daltonic, Billerica, MA, United States). For the protein identification, the MS/MS peak lists were extracted, converted into mgf-format files and compared to the C. jejuni, strain 81–176 protein database (UniprotKB, CP000538 for the chromosome, CP000549 for plasmid pTet and CP000550 for plasmid pVir) with the MASCOT Daemon search engine (version 2.6.0; Matrix Science, London, United Kingdom). The following search parameters were used: trypsin was used as the cutting enzyme, the mass tolerance for monoisotopic peptide window was set to ±1.0 Da and the MS/MS tolerance window was set to ±0.5 Da. Two missed cleavages were allowed. Carbamidomethylation, oxidized methionine, acetylation and pyroglutamate in Nt and amidation in Ct were chosen as variable modifications. Generally, the peptides with individual ions scores higher than the score indicated for p < 0.05 were selected. The proteins with two or more unique peptides matching the protein sequence were automatically considered as a positive identification. The main raw data are presented in Supplementary Data Sheet S1. Other raw data are available upon request.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!