The largest database of trusted experimental protocols

The Malme-3 is a laboratory equipment designed for the incubation and cultivation of cell cultures. It features a temperature-controlled chamber and supports various cell culture techniques.

Automatically generated - may contain errors

4 protocols using malme 3

1

Malignant Melanoma Cell Lines and Growth Conditions

Check if the same lab product or an alternative is used in the 5 most similar protocols
Human malignant melanoma cell lines (part of NCI-60 panel of human cancer cells) - SK-MEL-5, SK-MEL-28, MALME-3M, MDA-MB-435S and normal human skin fibroblast cells MALME-3 cells were obtained from American Type Culture Collection (ATCC; Manassas, VA). SK-MEL-5 and SK-MEL-28 were grown and maintained in EMEM media (ATCC), while MALME-3M and MDA-MB-435S were grown in IMDM (ATCC) and RPMI-1640 (ATCC) respectively, as indicated by ATCC protocols. Complete growth media was supplemented with 10% fetal bovine serum (FBS; ATCC) and 1X antibiotic-antimycotic (Thermo Fisher Scientific, Waltham, MA). MALME-3 cells were grown in McCoy's medium (ATCC) supplemented with 15% FBS and 1X antibiotic-antimycotic. Cells were grown at 37C / 5% CO2 in a humidified incubator. Half the media was replaced every 48 hr. No hGH was present in the media or added externally unless specifically mentioned. For hGH treatment, 16 hr. after seeding (or 24 hr. post-transfection), the cells were serum-starved for 2 hr. in serum free growth media and hGH (PBS as control) was added at the mentioned concentrations (5, 50, 150 ng/mL). Cells were subsequently incubated for 24 hr. before RNA extraction. Recombinant hGH was purchased from Antibodies Online (Atlanta, GA).
+ Open protocol
+ Expand
2

Cell Line Authentication and Maintenance

Check if the same lab product or an alternative is used in the 5 most similar protocols
Human cells were obtained from American Type Culture Collection (ATCC) (Manassas, VA) and stored in vials immersed in N2(l). Prior to their use, human cell lines were authenticated by morphology, karyotyping, and PCR-based methods, which included an assay to detect species specific variants of the cytochrome C oxidase I gene (to rule out interspecies contamination) and short tandem repeat profiling (to distinguish between individual human cell lines and rule out intraspecies contamination). To minimize genetic drift, a thawed vial was used for fewer than fifteen passages.
Medium and added components, trypsin (0.25% w/v), and Dulbecco’s phosphate-buffered saline (PBS) were from the Gibco® brand from Thermo Fisher Scientific (Waltham, MA). Cells were grown in flat-bottomed culture flasks in a cell-culture incubator at 37 °C under CO2(g) (5% v/v). A549 cells (ATCC CCL-185) were grown in F-12K medium; H358 (ATCC CRL-5807) cells were grown in RPMI-1640 medium; SK-MEL-28 cells (ATCC HTB-72) were grown in Eagle’s minimum essential medium; A375 cells (ATCC CRL-1619) and HEK293T cells (ATCC CRL-1573) were grown in Dulbecco’s modified Eagle’s medium; Malme-3M (ATCC HBT-64) cells were grown in Iscove’s modified Dulbecco’s medium; Malme-3 (ATCC HTB-102) cells were grown in McCoy’s 5a modified medium. The Corning 96-well microplates used in experiments were from Sigma–Aldrich.
+ Open protocol
+ Expand
3

Cell Lines and Inhibitors for Melanoma Research

Check if the same lab product or an alternative is used in the 5 most similar protocols
The HEK293, Malme-3M, Malme-3 and A375 cell lines were obtained from American Type Culture Collection, and SK-Mel-19 was kindly provided by Dr. Neal Rosen (Memorial Sloan-Kettering Cancer Center). The cancer cell lines derived from melanoma (SK-Mel-19, A375 and Malme-3M) were maintained in RPMI-1640 medium (Gibco) supplemented with 10% heat-inactivated fetal bovine serum (Biological Industries), 50 U/ml penicillin, and 50 μg/ml streptomycin at 37°C with 5% CO2. The Malme-3 cells, which were derived from skin fibroblasts, were grown in McCoy's 5a Medium (Gibco) supplemented with 20% heat-inactivated FBS, 50 U/ml penicillin, and 50 μg/ml streptomycin at 37°C with 5% CO2. The human embryonic kidney cell line HEK293 was maintained in Dulbecco's modified Eagle's medium (Gibco) supplemented with 5% heat-inactivated fetal bovine serum, 50 U/ml penicillin, and 50 μg/ml streptomycin at 37°C with 5% CO2. The MEK inhibitors, PD325901, PLX4032 (Selleck) and U0126 (Sigma-Aldrich), and actinomycin D (Enzo) were dissolved in DMSO as stock solutions and stored at −20°C.
+ Open protocol
+ Expand
4

Cell Culture Protocols for Various Cell Lines

Check if the same lab product or an alternative is used in the 5 most similar protocols
All iPSC lines were cultured with mTeSR1 (StemCell Technologies, Vancouver, BC, Canada, http://www.stemcell.com) on Matrigel (BD Biosciences, San Diego, CA, http://www.bdbiosciences.com) -coated 6-well plates. Cell lines OP9, T98G, U-87, MCF7, BT-474, MDA-MB-453, Daudi, Hep G2, SK-OV-3, SCC-25, Raji, FHs 74 Int, HCT 116, Malme-3, Malme-3M, RPMI 8226, K562, THP-1, SW480, MCF 10A, MRC-5, NCI-H460 [American Type Culture Collection (ATTC), Manassas, VA, http://www.atcc.org] were cultured as recommended by ATCC. Cell line FM-57 [European Collection of Authenticated Cell Cultures (ECACC)] was culture cultured in RPMI 1640 with 10% fetal bovine serum (FBS, Thermo Fisher Scientific, Waltham, MA, http://www.thermofisher.com). Cell line OP9-DLL1 (Riken BRC Cell Bank, Ibaraki, Japan, http://cell.brc.riken.jp/en/) was cultured in MEMα (Thermo Fisher Scientific) with 20% FBS. Frozen human peripheral blood CD14+ monocytes (Lonza, http://www.lonza.com) were thawed and maintained in RPMI 1640 with 10% FBS.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!