The largest database of trusted experimental protocols

Ce 1100

Manufactured by Thermo Fisher Scientific
Sourced in Germany

The CE 1100 is a laboratory equipment product offered by Thermo Fisher Scientific. It is a compact capillary electrophoresis system designed for the separation and analysis of various biomolecules, such as proteins, nucleic acids, and small molecules. The CE 1100 utilizes the principles of capillary electrophoresis to achieve efficient and high-resolution separations.

Automatically generated - may contain errors

2 protocols using ce 1100

1

Sulfur Isotopic Analysis of Groundwater Sulfate

Check if the same lab product or an alternative is used in the 5 most similar protocols
Sulphide in groundwater was fixed with a zinc acetate solution (final concentration 1%). The zinc sulphide precipitate was removed by centrifugation at 4,500 rcf for 10 min and the pellet was discarded. The supernatant was used for sulphur isotopic measurement of sulphate. The supernatant was acidified to ∼pH 3 with 1 M HCl and heated to 90°C in a water bath. Sulphate was precipitated as BaSO4 by the addition of BaCl2 (10% solution). Samples were left to cool overnight then centrifuged at 4,500 rcf for 10 min. The supernatant was discarded and the BaSO4 pellet air-dried. The 32S/34S isotope ratio of sulphate (δ34SSO4 ‰ VCDT) was measured at the Stable Isotope Laboratory (Faculty of Geosciences and Environment, Université de Lausanne, Lausanne, Switzerland). The S isotope composition was measured with a He carrier gas and a Carlo Erba (CE 1100) elemental analyser linked to a Thermo Fisher Delta V mass spectrometer. Samples were reacted at 1,050°C in a stream of He-carrier gas spiked with oxygen gas. External reproducibility of standards was <0.15‰ and samples were calibrated against IAEA standards S1 and S3 (Ag2S) and NBS-127 (BaSO4) with accepted values of −0.3, −32.1, and 20.3‰, respectively.
+ Open protocol
+ Expand
2

Soil Organic Carbon Analysis Protocol

Check if the same lab product or an alternative is used in the 5 most similar protocols
Soil samples were collected at the end of the experiment after 539 days (May 31st, 2010). Two mineral soil cores (Ø 5 cm) from the middle of each mesocosm were transferred to the lab and stored at 4°C until further use. The cores were divided into 1 cm soil sections (0–1, 1–2, 2–3, 3–4 and 4–5 cm) and the two corresponding sections from each mesocosm were homogenized to get a composite sample. Soil was sieved (Ø 2 mm) and dried at 105°C for 24 h. Subsamples were ground in a ball mill (Retsch MM200, Haan, Germany). Organic C concentration was measured with an elemental analyzer (EA; vario Max, Elementar Analysesysteme GmbH, Hanau, Germany). Inorganic C was below the level of detection (LOD = 0.027% C) in all samples along the whole soil profiles (0–5 cm). To obtain isotope signatures (δ13C) of soil organic C, ground subsamples were weighed into tin capsules and measured using an EA-IRMS system [26] . Here, an EA (CE 1100) was coupled on-line via a Con Flo III interface with a Delta plus isotope ratio mass spectrometer (all supplied by Thermo Fisher, Bremen, Germany).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!