The largest database of trusted experimental protocols

Ez1590

Manufactured by Celgard

The EZ1590 is a laboratory instrument designed for automated nucleic acid extraction. It utilizes a magnetic bead-based technology to efficiently purify DNA, RNA, or other nucleic acids from a variety of sample types. The EZ1590 offers a streamlined and consistent extraction process, ensuring reliable results.

Automatically generated - may contain errors

Lab products found in correlation

8 protocols using ez1590

1

Metalized Microporous Matrix for Capacitive Touch

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 7

A Celgard EZ1590 microporous polypropylene matrix (15 μm thickness) is metalized on two sides via a vapor deposition process with aluminum metal to a sheet resistivity of between 0-500 Ω/sq. The metallization can be performed with patterning (mask, silk screening, etc.) associated with touch screen addressing technologies. A two sided patterning can be used for a “one layer” capacitive touch screen construction. The metalized microporous matrix can now be used in conjunction with a filler material to obtain the desired optical clarity properties. In this case, an optical adhesive with a refractive index matching the polypropylene matrix (i.e. NOA 148 from Norland Products) can be used to simultaneously fill the matrix and provide adhesive properties to the touchscreen glass surface, as well as the supporting layers below.

+ Open protocol
+ Expand
2

Metalized Microporous Matrix for Touchscreens

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 5

A Celgard EZ1590 microporous polypropylene matrix (15 μm thickness) is metalized on one side via a vapor deposition process with aluminum metal to a sheet resistivity of between 0-500 Ω/sq. The metallization can be performed with patterning (mask, silk screening, etc.) associated with touch screen addressing technologies. The metalized microporous matrix can now be used in conjunction with a filler material to obtain the desired optical clarity properties. In this case, an optical adhesive with a refractive index matching the polypropylene matrix (i.e. NOA 148 from Norland Products) can be used to simultaneously fill the matrix and provide adhesive properties to the touchscreen glass surface, as well as the supporting layers below.

+ Open protocol
+ Expand
3

Metalized Microporous Polypropylene Matrix

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 7

A Celgard EZ1590 microporous polypropylene matrix (15 μm thickness) is metalized on two sides via a vapor deposition process with aluminum metal to a sheet resistivity of between 0-500 Ω/sq. The metallization can be performed with patterning (mask, silk screening, etc.) associated with touch screen addressing technologies. A two sided patterning can be used for a “one layer” capacitive touch screen construction. The metalized microporous matrix can now be used in conjunction with a filler material to obtain the desired optical clarity properties. In this case, an optical adhesive with a refractive index matching the polypropylene matrix (i.e. NOA 148 from Norland Products) can be used to simultaneously fill the matrix and provide adhesive properties to the touchscreen glass surface, as well as the supporting layers below.

+ Open protocol
+ Expand
4

Capacitive Touch Screen Construction

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 8

A Celgard EZ1590 microporous polypropylene matrix (15 μm thickness) is treated on two sides via a vapor deposition process with ITO to a sheet resistivity of between 0-500 Ω/sq. The sputtering can be performed with patterning (mask, silk screening, etc.) associated with touch screen addressing technologies. A two sided patterning can be used for a “one layer” capacitive touch screen construction. The metalized microporous matrix can now be used in conjunction with a filler material to obtain the desired optical clarity properties. In this case, an optical adhesive with a refractive index matching the polypropylene matrix (i.e. NOA 148 from Norland Products) can be used to simultaneously fill the matrix and provide adhesive properties to the touchscreen glass surface, as well as the supporting layers below.

+ Open protocol
+ Expand
5

Enhancing Touchscreen Optical Clarity

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 6

A Celgard EZ1590 microporous polypropylene matrix (15 μm thickness) is treated on one side via a vapor deposition process with ITO to a sheet resistivity of between 0-500 n/sq. The sputtering can be performed with patterning (mask, silk screening, etc.) associated with touch screen addressing technologies. The metalized microporous matrix can now be used in conjunction with a filler material to obtain the desired optical clarity properties. In this case, an optical adhesive with a refractive index matching the polypropylene matrix (i.e. NOA 148 from Norland Products) can be used to simultaneously fill the matrix and provide adhesive properties to the touchscreen glass surface, as well as the supporting layers below.

+ Open protocol
+ Expand
6

Fabrication of Touchscreen Composite

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 6

A Celgard EZ1590 microporous polypropylene matrix (15 μm thickness) is treated on one side via a vapor deposition process with ITO to a sheet resistivity of between 0-500 Ω/sq. The sputtering can be performed with patterning (mask, silk screening, etc.) associated with touch screen addressing technologies. The metalized microporous matrix can now be used in conjunction with a filler material to obtain the desired optical clarity properties. In this case, an optical adhesive with a refractive index matching the polypropylene matrix (i.e. NOA 148 from Norland Products) can be used to simultaneously fill the matrix and provide adhesive properties to the touchscreen glass surface, as well as the supporting layers below.

+ Open protocol
+ Expand
7

Fabricating Transparent Capacitive Touchscreens

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 8

A Celgard EZ1590 microporous polypropylene matrix (15 μm thickness) is treated on two sides via a vapor deposition process with ITO to a sheet resistivity of between 0-500 Ω/sq. The sputtering can be performed with patterning (mask, silk screening, etc.) associated with touch screen addressing technologies. A two sided patterning can be used for a “one layer” capacitive touch screen construction. The metalized microporous matrix can now be used in conjunction with a filler material to obtain the desired optical clarity properties. In this case, an optical adhesive with a refractive index matching the polypropylene matrix (i.e. NOA 148 from Norland Products) can be used to simultaneously fill the matrix and provide adhesive properties to the touchscreen glass surface, as well as the supporting layers below.

+ Open protocol
+ Expand
8

Metalized Microporous Polypropylene Matrix

Check if the same lab product or an alternative is used in the 5 most similar protocols

EXAMPLE 5

A Celgard EZ1590 microporous polypropylene matrix (15 μm thickness) is metalized on one side via a vapor deposition process with aluminum metal to a sheet resistivity of between 0-500)/sq. The metallization can be performed with patterning (mask, silk screening, etc.) associated with touch screen addressing technologies. The metalized microporous matrix can now be used in conjunction with a filler material to obtain the desired optical clarity properties. In this case, an optical adhesive with a refractive index matching the polypropylene matrix (i.e. NOA 148 from Norland Products) can be used to simultaneously fill the matrix and provide adhesive properties to the touchscreen glass surface, as well as the supporting layers below.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!