Glucose and ethanol were analyzed using HPLC equipped with a refractive index detector
RID-10A (Shimadzu, Kyoto, Japan) with an Aminex HPX-87H column (Bio-rad, Hercules, CA, USA) at 65 °C using a mobile phase of 5 mM H
2SO
4 at a rate of 0.6 mL/min. 4-Hydroxybenzaldehyde, syringaldehyde, and vanillin were analyzed using reverse-phase HPLC (
SPD-20A, Shimadzu, Kyoto, Japan) equipped with a YMC-Pack ODS-A column (Tokyo, Japan) at 35 °C. 4-Hydroxybenzaldehyde and syringaldehyde were detected at 270 nm using a mobile phase of 30 % acetonitrile solution at a rate of 1.0 mL/min, and vanillin was detected at 320 nm using 50 % acetonitrile solution at a rate of 0.8 mL/min.
The biodegradation intermediates of phenolic aldehydes by
Z. mobilis ZM4 was identified by GC–MS. Samples were taken at 4 h intervals after inoculation and concentrated by rotary evaporator with vacuum system, then dissolved in ethyl acetate and acetonitrile solution (2:1, v/v) and silylated with NO-bis-trimethylsilyl trifluoro-acetamide according to [31 (
link), 32 (
link)]. The treated samples were analyzed using
Agilent 6890 GC–MS fitted with an
HP-5 MS column (30 m × 0.25 mm × 0.25 μm) (Agilent Technologies, Santa Clara, CA, USA) from 80 °C (held for 4 min) to 280 °C at 8 °C/min. 1 μL sample was injected and detected under splitless condition.
Yi X., Gu H., Gao Q., Liu Z.L, & Bao J. (2015). Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnology for Biofuels, 8, 153.