The largest database of trusted experimental protocols

Nexfin co trek

Manufactured by Edwards Lifesciences

The Nexfin CO-trek is a non-invasive hemodynamic monitoring device that continuously measures beat-by-beat changes in cardiac output and related cardiovascular parameters. It utilizes the Nexfin technology to provide real-time data on cardiovascular function without the need for invasive procedures.

Automatically generated - may contain errors

2 protocols using nexfin co trek

1

Hemodynamic Monitoring in Critical Care

Check if the same lab product or an alternative is used in the 5 most similar protocols
Blood pressure (BP) was continuously measured using a non-invasive volume clamp method (Nexfin, Edwards Lifesciences BMEYE, Amsterdam, the Netherlands). Left ventricular SV was estimated by a pulse contour method (Nexfin CO-trek, Edwards Lifesciences BMEYE, Amsterdam, the Netherlands) [24 (link), 25 (link)] and CO was SV times heart rate (HR). SV index (SVI) was the ratio of SV and body surface area [26 ]. SPV and PPV were calculated from the BP signal:
100×AmaxAmin(Amax+Amin)/2
with Amax/min equal to, respectively, systolic arterial pressure (SAP) and pulse pressure (PP; SAP minus diastolic arterial pressure (DAP)). PPV and SPV were calculated for each breath and averaged over 5 consecutive breaths.
Airway flow and pressure were measured using an Alveotest flowmeter (Jaeger, Würzburg, Germany), tidal volume (TV) was the integral of airway flow (expressed in mL per kg predicted body weight) and end-tidal CO2 (PetCO2) was measured by capnography (Tonocap, Datex-Ohmeda, Madison, USA). Signals were visually inspected for artefacts and 60-second intervals were used for offline analysis (Matlab R2007b, Mathworks Inc. MA, USA).
+ Open protocol
+ Expand
2

Noninvasive Hemodynamic Monitoring During Physiological Challenges

Check if the same lab product or an alternative is used in the 5 most similar protocols
Continuous blood pressure (BP) was measured noninvasively by finger plethysmography with the cuff placed around the middle phalanx of the nondominant hand placed at heart level (Nexfin, Edwards Lifesciences BMEYE, the Netherlands). Left ventricular stroke volume (SV) was estimated beat by beat by pulse contour (Nexfin CO‐trek, Edwards Lifesciences BMEYE, Amsterdam, the Netherlands) and by inert gas rebreathing (Innocor, Innovision A/S, Odense, Denmark) (Gabrielsen et al. 2002; Bartels et al. 2011). CO was stroke volume (SV) times heart rate (HR). Total peripheral resistance (TPR) was the ratio of mean arterial pressure (BPmean) and CO. End‐tidal CO2 partial pressure (PetCO2) was monitored through a nasal cannula connected to a sampling capnograph (Datex Normocap 200, Helsinki, Finland).
Changes in MCAV were followed in the proximal segment of the middle cerebral artery (MCA) by transcranial Doppler ultrasonography (TCD; DWL Multidop X4, Sipplingen, Germany). The left MCA was insonated through the temporal window just above the zygomatic arch at a depth of 40–60 mm with a pulsed 2 MHz probe. Once the optimal signal‐to‐noise ratio was obtained, the probe was immobilized by a head band.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!