The largest database of trusted experimental protocols

Methanol ar

Manufactured by Merck Group
Sourced in United States

Methanol (AR) is a high-purity analytical reagent used in various laboratory applications. It is a colorless, volatile, and flammable liquid with a characteristic odor. Methanol serves as a solvent, reagent, and fuel in scientific research and analysis.

Automatically generated - may contain errors

2 protocols using methanol ar

1

Migratory and Invasive Potential of Renal Cancer Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
The 24-well transwell units with 8 mm I.D. polyester membrane with 8 μm pore size polycarbonate filters (Corning, USA) were employed to investigate the influences of miR-4521 upregulation and FAM129A downregulation on the in vitro migration and invasion properties of 786-O and ACHN cells. For migration assays, 600 μL of RPMI-1640 with 15% FBS was loaded into each lower chamber. 10,000 and 2000 cells from each of the 786-O and the ACHN groups were separately loaded into one upper chamber in 200 μL of RPMI-1640 medium and incubated at 37 °C with 5% CO2 for 24 h. The cells on the upper surface of the insert that did not migrate were carefully wiped off using cotton swabs. The cells that migrated to the lower surface of the filter were fixed in methanol (AR, Sigma, USA) for 30 min, dried for 5 min at RT, stained in 0.1% crystal violet for 40 min, washed with PBS (200 μL), and counted by randomly selecting five fields per well using an upright light microscope (Olympus, Japan) at a magnification of ×200.
For invasion assays, the filter surface of an insert transwell unit was first coated with 50 μL ice-cold ECM gel (1:5 dilution with RPMI 1640, Sigma, USA) by incubating at 37 °C for 8 h. The loading numbers for the 786-O and the ACHN group cells were 7500 and 15,000, respectively, in 200 μL of RPMI-1640. The remaining steps were the same as for the migration assays.
+ Open protocol
+ Expand
2

Evaluating Cell Migration and Invasion

Check if the same lab product or an alternative is used in the 5 most similar protocols
The effect of CRKL and ETV6 deregulations on the migration and invasion abilities of HepG2, HCCLM3 and HuH7 cells were examined using the Boyden transwell chamber assay. Briefly, 1 × 104 cells in 200 μl serum-free DMEM were seeded onto the upper compartment of transwell with 8 μm pore size polycarbonate filters (Corning, USA). The chambers were then placed into 24-well plates containing 600 μl DMEM with 20% FBS and incubated for 24 h at 37 °C with 5% CO2. For invasion assay, the inserts were first coated with 50 μl 2.5% ECM gel (Sigma, USA) in DMEM, and incubated at 37 °C for 1 h. 1 × 104 cells in 200 μl serum-free DMEM were seeded onto the upper compartment of the transwell. The chambers were then placed into 24-well plates containing 600 μl DMEM with 20% FBS and incubated for 24 h at 37 °C with 5% CO2. The non-migrated and non-invaded cells on the upper surface of the insert were removed by swabbing, the migrated and invaded cells onto the lower surface were fixed with methanol (AR, Sigma, US) for 30 min, stained with 0.1% crystal violet for 40 min, washed with phosphate buffered solution (PBS), counted using an upright light microscope (Olympus, Japan) with 100× magnification. Five random field views were counted and averaged.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!