In some experiments, 1 dpf embryos were manually dechorionated and/or treated for 24 h at 28°C by bath immersion with the NADPH oxidase inhibitor dibenziodolium chloride (DPI, Sigma-Aldrich) at a final concentration of 100 µM diluted in egg water supplemented with 1% DMSO.
Microinjector
The Microinjector is a precision instrument designed for the controlled injection of small volumes of fluid into cells or other biological samples. It features adjustable injection pressure and duration settings to enable accurate and consistent microinjections.
Lab products found in correlation
38 protocols using microinjector
Microinjection of Morpholinos and RNA into Zebrafish Embryos
In some experiments, 1 dpf embryos were manually dechorionated and/or treated for 24 h at 28°C by bath immersion with the NADPH oxidase inhibitor dibenziodolium chloride (DPI, Sigma-Aldrich) at a final concentration of 100 µM diluted in egg water supplemented with 1% DMSO.
RNAi Silencing of IrHRG in Ticks
Zebrafish Xenograft Glioblastoma Model
Optogenetic Manipulation of V1 Neurons
Zebrafish Developmental Morpholino Manipulation
GAAAGGTGTCTTCACTGTCCGCCAT-3′) was purchased from Gene Tools (Philomatch, OR, USA). Human miR-30a, mir-9 and a negative control were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Zebrafish were raised under standard conditions at 28.5 °C. Each 1-2-cell stage embryo was injected with a constant injection of 5 ng MO, 100 pg TBX5 mRNA and 100 pg miRNAs using a microinjector (Narishige, Japan). Twelve hours post-injection, the dead embryos were removed, leaving only viable embryos that were used for further analysis. Consistent with the previously published studies [18 (link), 55 (link)], all live embryos were divided into the four categories according to their heart morphologies. At 48-h post fertilization (hpf), images were acquired with an Olympus stereomicroscope microscope or Leica TCS-SP5 LSM confocal microscope. For confocal imaging analysis of zebrafish embryos, they were anesthetized with egg water/0.16 mgml−1 tricaine/1% 1- phenyl-2-thiourea (Sigma-Aldrich, St Louis, MO, USA) and embedded in 0.6% low melting agarose. Confocal imaging analysis was performed using Imaris software. Two transgenic zebrafish lines: Tg(vmhc:eGFP) and Tg(vmhc:mCherry-NTR) were used as described in previous work [55 (link)]. Whole-embryo microRNA sensor assay in zebrafish was carried out as described previously [56 (link)].
Zebrafish Embryo Microinjection Knockdown
PADI1 Morpholino Knockdown in Zygotes
Sororin knockdown in mouse oocytes
Knockdown of Cell Cycle Regulators in Mouse and Porcine Oocytes
Overexpression of Myc-Tfap2a in Oocytes
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!