The largest database of trusted experimental protocols

Nd72z2laq pifoc objective scanning system

Manufactured by Physik Instrumente
Sourced in Germany

The ND72Z2LAQ PIFOC objective scanning system is a lab equipment product from Physik Instrumente. It is a high-precision, piezo-driven objective scanner designed for applications that require precise and fast positioning of microscope objectives.

Automatically generated - may contain errors

2 protocols using nd72z2laq pifoc objective scanning system

1

Multiphoton Imaging with Customized Scanning

Check if the same lab product or an alternative is used in the 5 most similar protocols
A mode locked Ti:Sapphire laser (Chameleon, 120 fs pulse width, 90 MHz repetition rate, Coherent, CA) was coupled into a custom-made scanning system based on a pair of galvanometric mirrors (VM500+, Cambridge Technologies, MA). The laser was focused onto the specimen by a water immersion 20x objective lens (XLUM 20, NA 0.95, WD 2 mm, Olympus, Japan) for uncleared (PBS) sample imaging or a tunable 20x objective lens (Scale LD SC Plan-Apochromat, NA 1, WD 5.6mm, Zeiss, Germany) for cleared (47% TDE/PBS) sample imaging. The system was equipped with a motorized xy stage (MPC-200, Shutter Instrumente, CA) for axial displacement of the sample and with a closed-loop piezoelectric stage (ND72Z2LAQ PIFOC objective scanning system, 2 mm travel range, Physik Instrumente, Germany) for the displacement of the objective along the z axis. The fluorescence signals were collected by two photomultiplier modules (H7422, Hamamatsu Photonics, NJ). The instrument was controlled by custom software, written in LabView (National Instruments, TX).
+ Open protocol
+ Expand
2

Multimodal Microscopic Imaging of Biological Specimens

Check if the same lab product or an alternative is used in the 5 most similar protocols
Fluorescence images were obtained using a commercial confocal microscope (Nikon Eclipse TE300 C2 LSCM, Nikon, Japan) equipped with a Nikon 60 × or 100 × immersion oil objective (Apo Plan, NA 1.4), and a custom-made two-photon fluorescence microscope (TPFM). Briefly, a mode-locked Ti: Sapphire laser (Chameleon, 120 fs pulse width, 90 MHz repetition rate, Coherent, CA) operating at 800 nm was coupled into a custom-made scanning system based on a pair of galvanometric mirrors (LSKGG4/M, Thorlabs, USA). The laser was focused onto the specimen by a refractive index tunable 25 × objective lens (LD LCI Plan-Apochromat 25X/0.8 Imm Corr DIC M27, Zeiss, Germany). The field of view was 450 × 450 μm2, the resolution employed was 0.44 × 0.44 μm2 or 1.75 × 1.75 μm2 for high- and low-resolution reconstruction, respectively. The system was equipped with a closed-loop XY stage (U-780 PILine XY Stage System, Physik Instrumente, Germany) for the radial displacement of the sample and with a closed-loop piezoelectric stage (ND72Z2LAQ PIFOC objective scanning system, 2 mm travel range, Physik Instrumente, Germany) for the axial displacement of the objective. The fluorescence signal was collected by an independent GaAsP photomultiplier module (H7422, Hamamatsu Photonics, NJ). Emission filters of 482/35 nm and 618/50 nm were used for fibers and cell body detection, respectively.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!