For cell quantification, pictures were captured on whole radial sections using the Mosaix mode in Axiovision 4.7. Labelled cells (TUNEL, calpain activity) were counted manually. The total number of cells was determined by dividing the area of the outer nuclear layer (ONL) through the average ONL cell size. The number of positive cells was then divided by the total number of ONL cells to give the percentage of positive cells.
Z1 apotome microscope
The Z1 Apotome microscope is a high-performance optical microscope designed for advanced imaging applications. It utilizes a structured illumination technique to provide improved contrast and optical sectioning capabilities, enabling the visualization of fine details within thick samples. The Z1 Apotome is a versatile tool suitable for a wide range of research and diagnostic applications.
Lab products found in correlation
8 protocols using z1 apotome microscope
Fluorescence Microscopy for Retinal Cell Quantification
For cell quantification, pictures were captured on whole radial sections using the Mosaix mode in Axiovision 4.7. Labelled cells (TUNEL, calpain activity) were counted manually. The total number of cells was determined by dividing the area of the outer nuclear layer (ONL) through the average ONL cell size. The number of positive cells was then divided by the total number of ONL cells to give the percentage of positive cells.
Fluorescence Imaging of Brain Tissue
Immunofluorescent Labeling of GLUT2 in Brain
Confocal Microscopy Imaging Protocol
Fetal sections were examined using an Axio Imager.Z1 ApoTome microscope (Carl Zeiss, Germany) equipped with a motorized stage and an AxioCam MRm camera (Zeiss). For confocal observation and analyses, an inverted laser scanning Axio observer microscope (LSM 710, Zeiss) with an EC Plan NeoFluorÅ ~100/1.4 numerical aperture oil-immersion objective (Zeiss) was used (Imaging Core Facility of IFR114, of the University of Lille, France).
Fluorescence In Situ Hybridization for Chromatin Mapping
Quantitative Fluorescence Microscopy Analysis
Photoreceptors stained by the TUNEL assay were counted manually on three images per explant, the average cell number in a given ONL area was estimated based on DAPI staining and used to calculate the percentage of TUNEL-positive cells. Cones stained with Arr3 were counted on Apotome images using MIF. Cone numbers are expressed as Arr3-positive cells visible in 100 µm stretches of retinal circumference.
Adobe Photoshop CS6 (Adobe Systems Inc, San Jose, CA, USA) and Adobe Illustrator CC 2019 software was used for primary image processing. All data given represent the means and standard deviation from at least five different animals. Statistical comparisons between experimental groups were made using Student’s paired t-test or ANOVA and multiple comparisons correction with Tukey’s post hoc test (
Perfusion, Brain Slicing, and Optrode Localization
Immunohistochemical Analysis of C1q and PSD-95
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!