36 subjects were included in the study: 12 subjects served as controls, 12 patients were affected by diabetes without diabetic retinopathy (no DR), and 12 patients were affected by diabetes and diabetic retinopathy (mild to moderate). One eye of each subject was used for the SD-OCT analysis. The exclusion criteria were proliferative DR, macular edema, any type of previous retinal treatment (macular laser photocoagulation, vitrectomy, intravitreal steroids, and/or antiangiogenic drugs), any intraocular surgery, refractive error >6D, previous diagnosis of glaucoma, ocular hypertension, uveitis or other retinal diseases, and significant media opacities that precluded fundus imaging. All patients underwent SD-OCT using Spectralis (Heidelberg Engineering, Heidelberg, Germany). A single 180° SD-OCT line scan (6 mm length) centered onto the fovea was analyzed for each patient, looking for the presence of hyperreflective spots. Two red vertical lines were traced at 500 μm and 1500 μm from the center of the fovea in the temporal region, thus excluding the foveal avascular zone. A manual count of the hyperreflective spots, defined as small, punctiform, white lesions, was performed between the two markers. The layering was obtained using the automatic layering of the Spectralis SD-OCT with manual refinement for the boundaries of the most critical layers (e.g., inferior boundary of ganglion cell layer where contrast is lower).
The count was performed starting from the inner limiting membrane (ILM) to the outer nuclear layer (ONL), including ILM to ganglion cell layer (GCL); inner nuclear layer (INL) to outer plexiform layer (OPL), and ONL. All measurements were performed by two independent, masked graders (Figure 1).
A written consent form was obtained from all patients as well as the approval from our institutional ethics committee. The study was conducted in accordance with the tenets of the Declaration of Helsinki.
The difference in the number of hyperreflective spots was compared among groups by means of analysis of variance (ANOVA).
Free full text:
Click here
Vujosevic S., Bini S., Midena G., Berton M., Pilotto E, & Midena E. (2013). Hyperreflective Intraretinal Spots in Diabetics without and with Nonproliferative Diabetic Retinopathy: An In Vivo Study Using Spectral Domain OCT. Journal of Diabetes Research, 2013, 491835.