Reagents and solvents were purchased from Fischer Scientific, Sigma Aldrich™, Fluorochem™, or Alfa Aesar™, were of analytical reagent grade and were used as received. 1H and 13C-NMR spectra were recorded, in specified deuterated solvents, (purchased from Apollo Scientific™), at room temperature on Bruker™ Avance-400 (1H, 13C) (operating at 400.13 MHz) spectrometers and are reported as follows: chemical shift δ (ppm) (number of protons, multiplicity, coupling constant J (Hz) (if applicable), assignment). Multiplicities are reported using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet) and m (unresolved multiplet). All 13C-NMR spectra were proton-decoupled and carbons are numbered according to the IUPAC systematic name. The 1H and 13C chemical shifts are reported using the residual signal of deuterated solvent as the internal reference (for CDCl3: δH = 7.26 ppm; δC = 77.16 ppm and for deuterated d6-DMSO: δH = 2.50 ppm; δC = 39.51 ppm). All chemical shifts are quoted in parts per million, relative to tetramethylsilane (δH, δC = 0.00 ppm). All coupling constants are 3JHH unless otherwise stated. Electrospray Ionisation (ESI) mass spectra, for LC-MS results were obtained using a TQD mass spectrometer (Waters UK Ltd., Manchester, UK). High-resolution mass spectra were obtained with an LCT Premier XE mass spectrometer (Waters UK Ltd., Manchester, UK); all were obtained by the Durham University Mass Spectrometry service. ASAP mass spectra were obtained using a Waters™ Synapt G2s apparatus. Thin-Layer Chromatography was performed using Merck TLC Aluminium oxide 60 F254 with glass backing. Plates were stained with potassium permanganate solution, where required and visualised using UV light. Column chromatography refers to purification by applying the mixture, dissolved in a minimum amount of dichloromethane, onto silica gel (40–63 µm mesh size) with the stated solvent system.
Free full text: Click here