Arabidopsis leaves were collected before and after heat treatment, ground in liquid nitrogen and homogenized in an detergemt-containing extraction buffer (100 mMTris/HCl, pH 8.0, 10 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.2% ß-mercaptoethanol). The homogenates were filtered through a 300 µm and 100 µm nylon mesh and clarified by centrifugation at 2,200xg for 5 minutes. Supernatants were kept for further analysis. The pellets were resuspended in the same buffer and subjected to the low speed centrifugation. The process was repeated twice and after the last centrifugation the pellets were resuspended in the extraction buffer. The concentrations of proteins in the homogenates (total proteins), the first supernatants (soluble proteins) and last pellets (insoluble proteins) were determined using Bio-Rad protein assay kit. The first supernatant fractions and last pellets were separated by SDS–PAGE. For western blotting, fractionated proteins on SDS/PAGE gel were transferred to nitrocellulose membrane. NBR1-TAP was detected by a peroxidase-conjugated anti-peroxidase antibody. Ubiquitinated proteins were detected by protein blotting using an anti-ubiquitin monoclonal antibody (Sigma, USA). The antigen-antibody complexes were detected by enhanced chemiluminescence using luminal as substrate as previously described [39] .
Heat Stress Protein Analysis in Arabidopsis
Arabidopsis leaves were collected before and after heat treatment, ground in liquid nitrogen and homogenized in an detergemt-containing extraction buffer (100 mMTris/HCl, pH 8.0, 10 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.2% ß-mercaptoethanol). The homogenates were filtered through a 300 µm and 100 µm nylon mesh and clarified by centrifugation at 2,200xg for 5 minutes. Supernatants were kept for further analysis. The pellets were resuspended in the same buffer and subjected to the low speed centrifugation. The process was repeated twice and after the last centrifugation the pellets were resuspended in the extraction buffer. The concentrations of proteins in the homogenates (total proteins), the first supernatants (soluble proteins) and last pellets (insoluble proteins) were determined using Bio-Rad protein assay kit. The first supernatant fractions and last pellets were separated by SDS–PAGE. For western blotting, fractionated proteins on SDS/PAGE gel were transferred to nitrocellulose membrane. NBR1-TAP was detected by a peroxidase-conjugated anti-peroxidase antibody. Ubiquitinated proteins were detected by protein blotting using an anti-ubiquitin monoclonal antibody (Sigma, USA). The antigen-antibody complexes were detected by enhanced chemiluminescence using luminal as substrate as previously described [39] .
Corresponding Organization : Purdue University West Lafayette
Protocol cited in 7 other protocols
Variable analysis
- Heat treatment
- Protein concentration in homogenates (total proteins)
- Protein concentration in first supernatants (soluble proteins)
- Protein concentration in last pellets (insoluble proteins)
- Presence and abundance of NBR1-TAP protein
- Presence and abundance of ubiquitinated proteins
- Arabidopsis leaves
- Extraction buffer composition (100 mM Tris/HCl, pH 8.0, 10 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.2% β-mercaptoethanol)
- Filtration through 300 µm and 100 µm nylon meshes
- Centrifugation at 2,200xg for 5 minutes
- Resuspension of pellets in the same extraction buffer
- Protein quantification using Bio-Rad protein assay kit
- SDS-PAGE separation of protein fractions
- Western blotting using anti-peroxidase antibody for NBR1-TAP detection and anti-ubiquitin antibody for ubiquitinated protein detection
- Enhanced chemiluminescence detection
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!