The reading and identification of the peptides were performed on a nanoAcquity UPLC-Xevo QTof MS system (Waters Corporation, Wilmslow, UK), which were interpreted by Protein Lynx Global Server (PLGS) software applying the Monte-Carlo algorithm. After comparing the experimental groups, it was considered p < 0.05 for downregulated proteins and 1 − p > 0.95 for upregulated proteins. It was used the Rattus norvegicus proteome downloaded from Uniprot. After, the proteins identified were analyzed by a bioinformatic approach using Cytoscape 3.6.1 (Java®) with ClueGO plugin [26 (link)].
Proteomic Analysis of Motor Cortex
The reading and identification of the peptides were performed on a nanoAcquity UPLC-Xevo QTof MS system (Waters Corporation, Wilmslow, UK), which were interpreted by Protein Lynx Global Server (PLGS) software applying the Monte-Carlo algorithm. After comparing the experimental groups, it was considered p < 0.05 for downregulated proteins and 1 − p > 0.95 for upregulated proteins. It was used the Rattus norvegicus proteome downloaded from Uniprot. After, the proteins identified were analyzed by a bioinformatic approach using Cytoscape 3.6.1 (Java®) with ClueGO plugin [26 (link)].
Corresponding Organization : Universidade Federal do Pará
Other organizations : Universidade de São Paulo, Universidade do Estado do Rio Grande do Norte
Protocol cited in 1 other protocol
Variable analysis
- None explicitly mentioned
- Protein expression levels
- Samples of motor cortex from two animals were pooled
- All procedures were carried out in triplicate
- Positive control: Alcohol dehydrogenase standard (1 pmol/μL)
- Negative control: Not mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!