Copy number data were processed, analysed and visualised using VIVAR31 (link). For fluorescent in situ hybridization (FISH), four-micron-thick tissue sections were cut onto positively charged slides. The unstained slides were deparaffinized in xylene and dehydrated in graded alcohols. Cell conditioning was performed in a 1 M sodium thiocyanate water bath at 80 °C for 30 min, followed by a washing step in 2 × saline-sodium citrate (SSC) buffer and an incubation step using proteinase K (Roche, Indianapolis, IN, USA) for 20 min at 37 °C. Probes for for the SOX11 locus (CTD-2037E22) was applied, following heat block denaturation at 80 °C for 5 min, and hybridization at 37 °C for 14 to 18 h. The coverslip was removed by washing in 2 × SSC buffer. Excess probe was eliminated with 0.5 × SSC buffer stringency washes, followed by similar graded stringency washes. The digoxigenin-labeled probes were visualized using fluorescein isothiocyanate-antidigoxigenin (Roche). Using 4′,6-diamidino-2-phenylindole counterstain, nucleated cells were highlighted. A microscope, equipped with a dual-pass filter (Green/Orange; Vysis) and two single-pass filters (Green; Vysis, and Orange, Vysis), was employed to ultimately observe FISH signals. SOX11 amplifications and high-level focal gains were identified as copy number segments overlapping with the SOX11 locus with log2 ratio > = 2 and > = 0.3 respectively and a maximal size of 5 Mb.
Comprehensive Genomic Profiling Protocol
Copy number data were processed, analysed and visualised using VIVAR31 (link). For fluorescent in situ hybridization (FISH), four-micron-thick tissue sections were cut onto positively charged slides. The unstained slides were deparaffinized in xylene and dehydrated in graded alcohols. Cell conditioning was performed in a 1 M sodium thiocyanate water bath at 80 °C for 30 min, followed by a washing step in 2 × saline-sodium citrate (SSC) buffer and an incubation step using proteinase K (Roche, Indianapolis, IN, USA) for 20 min at 37 °C. Probes for for the SOX11 locus (CTD-2037E22) was applied, following heat block denaturation at 80 °C for 5 min, and hybridization at 37 °C for 14 to 18 h. The coverslip was removed by washing in 2 × SSC buffer. Excess probe was eliminated with 0.5 × SSC buffer stringency washes, followed by similar graded stringency washes. The digoxigenin-labeled probes were visualized using fluorescein isothiocyanate-antidigoxigenin (Roche). Using 4′,6-diamidino-2-phenylindole counterstain, nucleated cells were highlighted. A microscope, equipped with a dual-pass filter (Green/Orange; Vysis) and two single-pass filters (Green; Vysis, and Orange, Vysis), was employed to ultimately observe FISH signals. SOX11 amplifications and high-level focal gains were identified as copy number segments overlapping with the SOX11 locus with log2 ratio > = 2 and > = 0.3 respectively and a maximal size of 5 Mb.
Corresponding Organization : Ghent University
Other organizations : Dana-Farber Cancer Institute, Cancer Research Institute Ghent, University of Cologne, Memorial Sloan Kettering Cancer Center, Charité - Universitätsmedizin Berlin, Academic Medical Center
Variable analysis
- DNA extraction method (QiaAmp DNA Mini kit, QIAamp DNA FFPE tissue kit)
- DNA fragmentation method (Covaris' adaptive focused acoustics technology and M220 focused ultrasonicator)
- Library construction method (NEXTflex rapid DNA-Seq kit)
- Sequencing platform (cBot 2 and HiSeq 3000 system)
- DNA concentration (determined by Nanodrop measurement)
- DNA copy number (measured by arrayCGH and shallow whole genome sequencing)
- SOX11 amplifications and high-level focal gains (identified from sequencing data)
- Tissue section thickness (10 µm-thick FFPE tissue sections)
- Sequencing depth (at least 10 million reads per sample)
- FISH probe (CTD-2037E22 for SOX11 locus)
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!