Walk Score® (www.walkscore.com) is a publicly available large-scale method for calculating walkability. Walk Score was developed by Front Seat Management (www.frontseat.org), a software development company based in Seattle, WA, which focuses on software with civic applications. Walk Score uses publicly available data to assign a score to a location based on the distance to and variety of nearby commercial and public frequently-visited facilities. Data sources used by Walk Score include Google, Education.com, Open Street Map and Localeze. Facilities are divided into five categories: educational (e.g., schools), retail (e.g., grocery, drug, convenience and bookstores), food (e.g., restaurants), recreational (e.g., parks and gyms) and entertainment (e.g., movie theaters). The Walk Score algorithm then calculates the distance to the closest of each of the five facilities, using straight-line distances, and calculates a linear combination of these distances weighted both by facility type priority and a distance decay function [29 ]. The result is normalized to fit a 0 to 100 scale, with 0 being the lowest (lowest walkability/car dependent) and 100 being the highest (most walkable). If one of each of the five facilities is within a quarter-mile radius from the input location, that location receives a perfect 100 score. If no facilities are within a one-mile radius of the input location, that location will be assigned a score of zero. The location can be entered as geographic coordinates, or as an address which is then geolocated using Google Geolocation [30 ]. Front Seat provides an application programming interface (API), which can be used to query the Walk Score database through URL calls, eliminating the need to use the website interface [31 ]. In order to use the Walk Score API, the user must first obtain a key number, which can be requested on the Walk Score website. This unique key is used in all API calls, and has a limit on the number of uses per 24 hours. Using a scripting language, the user is able to paste a set of geographic coordinates along with the key number into an API call to quickly retrieve a Walk Score for each location. For this study, a program was created within the R programming language (R Foundation for Statistical Computing, Vienna, Austria), which queries the Walk Score database for each address used in the study. The script then scans the API response, which is in the form of an HTML page, and extracts the corresponding Walk Score. We obtained the walkability scores from Walk Score in mid May of 2011 using the Walk Score API and the geographic coordinates.
Duncan D.T., Aldstadt J., Whalen J., Melly S.J, & Gortmaker S.L. (2011). Validation of Walk Score® for Estimating Neighborhood Walkability: An Analysis of Four US Metropolitan Areas. International Journal of Environmental Research and Public Health, 8(11), 4160-4179.
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required