NIP or pNP conjugated to the peptide ASTGKTASACTSGASSTGSHis12 (NIP1-His12 or pNP1-His12) and NIP1-His12 and pNP1-His12 coupled to Hylight647 through the cysteine residue were purchased from Anaspec. The hapten–peptide conjugates were HPLC purified and verified by mass spectroscopy with >95% purity. The hapten-coupled peptides were attached to the Ni-NTA–containing lipid bilayer by incubating haptenated peptides (10 or 50 nM) with the bilayer for 20 min at room temperature (RT). Where indicated in the figures, mouse ICAM-1/huFc chimera protein with a 10-nM His12 tag (R&D Systems) was also attached to the lipid bilayers. After washing, the antigen-containing lipid bilayers were used in TIRF imaging. The amount of antigen bound to the bilayer was quantified by titration of the Hylight647-conjugated peptides to resolve single molecules. The concentration of the peptide attached to the bilayer was calculated by a function of where C is the concentration (number of molecules per square micrometer), N is the number of Hylight647-conjugated peptide molecules counted at a single-molecule resolution per square micrometer, and D is the titration rate. In our experimental system, incubating bilayers with a 10-nM haptenated peptide solution resulted in bilayers containing ∼25 molecules/µm2, and incubating with a 50-nM solution resulted in a bilayer containing 100 molecules/µm2 in the planar lipid bilayer.
Reconstituting Antigen-Presenting Lipid Bilayers
NIP or pNP conjugated to the peptide ASTGKTASACTSGASSTGSHis12 (NIP1-His12 or pNP1-His12) and NIP1-His12 and pNP1-His12 coupled to Hylight647 through the cysteine residue were purchased from Anaspec. The hapten–peptide conjugates were HPLC purified and verified by mass spectroscopy with >95% purity. The hapten-coupled peptides were attached to the Ni-NTA–containing lipid bilayer by incubating haptenated peptides (10 or 50 nM) with the bilayer for 20 min at room temperature (RT). Where indicated in the figures, mouse ICAM-1/huFc chimera protein with a 10-nM His12 tag (R&D Systems) was also attached to the lipid bilayers. After washing, the antigen-containing lipid bilayers were used in TIRF imaging. The amount of antigen bound to the bilayer was quantified by titration of the Hylight647-conjugated peptides to resolve single molecules. The concentration of the peptide attached to the bilayer was calculated by a function of where C is the concentration (number of molecules per square micrometer), N is the number of Hylight647-conjugated peptide molecules counted at a single-molecule resolution per square micrometer, and D is the titration rate. In our experimental system, incubating bilayers with a 10-nM haptenated peptide solution resulted in bilayers containing ∼25 molecules/µm2, and incubating with a 50-nM solution resulted in a bilayer containing 100 molecules/µm2 in the planar lipid bilayer.
Partial Protocol Preview
This section provides a glimpse into the protocol.
The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Corresponding Organization : National Institutes of Health
Other organizations : Technical University of Darmstadt
Protocol cited in 4 other protocols
Variable analysis
- Concentration of haptenated peptide (10 nM or 50 nM)
- Amount of antigen bound to the lipid bilayer
- Number of Hylight647-conjugated peptide molecules per square micrometer
- Composition of lipid bilayer (9:1 DOPC/DOGS-Ni-NTA ratio)
- Formation of unilamellar vesicles by sonication
- Cleaning and preparation of glass coverslips
- Incubation time of haptenated peptides with the lipid bilayer (20 min at room temperature)
- Inclusion of mouse ICAM-1/huFc chimera protein with a 10-nM His12 tag (where indicated)
- Hapten-coupled peptides (NIP1-His12 or pNP1-His12) conjugated to Hylight647 through the cysteine residue
- Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!