External DCR is the gold standard surgery for chronic dacryocystitis with nasolacrimal duct (NLD) obstruction, with the highest success rate. It requires limited follow up and is a cost-effective procedure. In conventional DCR, obliterated nasolacrimal duct is bypassed and the lacrimal sac is opened directly into the nasal cavity with the help of the lacrimal and nasal mucosal flap after making an osteum in the bone, but this operation has many limitations, like it is time taking and requires skill. There is bleeding, incision-related complications, postsurgical scarring, and disturbance of medial canthal tendon and muscles. Postoperative complications include hemorrhage (3.9%) and scarring (2.6%).[2 (link)] So during the modern era, when early rehabilitation and cosmetic appearance are of great importance, it is the need of the time that this surgery also crosses the need of incision without compromising on the success rate. The first intranasal approach was described in 1889 by Killian, and endoscopic DCR was first performed by Caldwell in 1893, but was soon abandoned due to difficult visualization and numerous complications.[7 ] The endonasal technique has gained popularity only in the past decade due to the developments in endoscopic surgery. The endonasal technique is performed endoscopically through the nose without the need for an external skin incision. The success rate is 70%-90%.[8 ] The advantages of transnasal endoscopic DCR (TNE-DCR) over external DCR are[9 (link)] that there is no outer skin incision with resulting scar, shorter procedure time, and shorter patient recovery time. The first cadaveric study in 1990 proved that osteotomy of the lacrimal bone can be achieved by laser energy delivered through an optic fiber by the transnasal or endocanalicular approach.[10 (link)] Lasers with several different wavelengths have been used to perform osteotomy as part of the DCR procedure, mostly as part of a transnasal approach: Holmium:Yttrium-Aluminum-Garnet (Ho:YAG) laser, potassium-titanyl-phosphate (KTP) laser, Neodymium:YAG (Nd:YAG) laser, Erbium:YAG (Er:YAG) laser, and diode laser. The use of a diode laser for EL-DCR has been first reported by Eloy et al. in 2000, followed by Fernandez et al. in 2004.[11 (link)12 (link)] Diode laser-assisted DCR seems to offer specific advantages for DCR.[13 (link)14 15 ] The main technical obstacles in EL-DCR are to deliver a sufficiently powerful laser beam via a relatively narrow optical fiber, which in turn fits into an endocanalicular probe. Several laser wavelengths successfully comply with this requirement. However, there are other considerations to take into account, mainly unwanted collateral heating of the probe and residual thermal damage to the target tissue. Based on theoretical and our own preclinical studies, the 980-nm diode laser seems to adequately fulfill all the above requirements.[16 (link)] In this study, diode laser, 980 nm (infrared) with optical power 10 watts (maximum), aiming beam 635 nm, 4 MW, brightness adjustable and operating mode Cw pulsed was used. Laser light was delivered through a 0.6 mm optic fiber with 0.36 mm core, which in turn was inserted into a canalicular probe. The last step in the development of less traumatic DCR is the endocanalicular/transcanalicular approach. In this approach, first described in 1963 by Jack, a probe is inserted through the lower lacrimal punctum via the canaliculus into the lacrimal sac following the anatomical pathway of tear outflow.[17 (link)] Osteotomy is performed either by a mechanical drill or laser energy through an optic fiber, which is inserted within the probe.[18 (link)] Successes in DCR surgery are compromised by a small osteum and blockage of the osteum by scarred tissue. Linberg et al. showed that an appropriately large osteotomy made during surgery can narrow down to a final size of approximately 2 mm due to tissue growth and scarring.[19 (link)] The small osteotomy size compromises the success rate of T-ECLAD. Many studies have reported a lower success rate of T-ECLAD in the primary acquired cases of nasolacrimal duct obstruction (NLDO).[15 20 21 22 (link)] One of the main open questions is adequate osteotomy size, as restenosis at the site of osteotomy is one of the leading causes of long-term failure in DCR.[23 ] An osteotomy of more than 10 mm in diameter can be routinely achieved by the classic approach, and a slightly smaller osteotomy of 7-9 mm is achieved with the transnasal approach.[24 (link)] The osteotomy size in our series was on an average 5 mm. We believe this is sufficient when using our technique, as there is minimal trauma to the surrounding mucosa and connective tissue, resulting in less postoperative scarring.[16 (link)] An interesting computed tomography study by Yazici and Yazici showed that final nasal osteum size six months after surgery has no correlation with osteotomy size at the time of surgery and suturing of mucosal flaps and measured from 3.1 to 3.8 mm in height.[25 (link)] Other factors must play a more important role in the development of restenosis, and we believe this to be tissue trauma, with the subsequent inflammatory response and scarring.[16 (link)] In this study, we had tried to keep osteum size big enough >5.0 mm, but it was found that during the procedure, the formation of first opening was quite easy but during successive shots, when we tried to increase the osteum size, it became harder to achieve desired size of opening. Probably, it is because the cannula was passed through a narrow tube (canaliculi), so it had a limited range of movement. Other difficulties which we had faced during the procedure [Table 3] were that the patient felt discomfort or pain. To manage it, nasal packing was done at least 45 min before starting the procedure and 2% xylocaine was injected locally. The aiming beam was not localized in some cases. To localize it, the cannula was rotated in the correct direction at 45 degrees, intensity of light was increased, blinking light was used, and if the endoscope was not clean it was cleaned. If there was difficulty in making the osteotomy, the laser power was increased. In case of inability to enlarge opening, the optical fiber was pulled backward to clearly visualize the aiming beam at the tip of the optical fiber. Opening was localized again with aiming beam and procedure was continued till desired size of osteum was made. The success rate can be increased using intraoperative mitomycin-C, an antiproliferative agent.[26 (link)] In this study, syringing was done with normal saline, betadine 5% solution, and mitomycin-c (0.02%) solution. Of course, there are certain disadvantages of this procedure. Some concern handling of the laser and the cost. A second endoscope for endonasal control as well as basic rhinologic surgery training is strongly suggested.[16 (link)] In this study, sometimes we faced a problem in exact focusing of the endoscope. In conclusion, The 980-nm T-ECLAD is a new contribution to the field of lacrimal surgery. It is a minimally invasive quick procedure. Although the success rate is not good (69.6%), but it may be a hope for future with better results if we continuously improve upon and analyze the procedure.