Synovial fragments were thawed by rapidly warming the cryovial in a 37 °C water bath. The preservation media was filtered out through a 70-μm strainer. The tissue was then rinsed through a series of incubations in a six-well culture plate: 10 min in 10% FBS/RPMI at room temperature with intermittent swirling, a quick rinse in 10% FBS/RPMI, and a final rinse in serum-free RPMI. Frozen synovial cells were thawed rapidly in a 37 °C water bath and transferred into 20 ml of 10% FBS/RPMI, centrifuged to pellet cells, and then resuspended in media for downstream analyses.
Cryopreservation and Thawing of Synovial Tissues
Synovial fragments were thawed by rapidly warming the cryovial in a 37 °C water bath. The preservation media was filtered out through a 70-μm strainer. The tissue was then rinsed through a series of incubations in a six-well culture plate: 10 min in 10% FBS/RPMI at room temperature with intermittent swirling, a quick rinse in 10% FBS/RPMI, and a final rinse in serum-free RPMI. Frozen synovial cells were thawed rapidly in a 37 °C water bath and transferred into 20 ml of 10% FBS/RPMI, centrifuged to pellet cells, and then resuspended in media for downstream analyses.
Corresponding Organization :
Other organizations : Hospital for Special Surgery, Harvard University, Brigham and Women's Hospital, University of Pittsburgh, University of Birmingham, Queen Elizabeth Hospital Birmingham, University of Rochester Medical Center, Broad Institute, University of California, San Diego, Cornell University, Mile End Hospital, Barts Health NHS Trust, Stanford University, University of Massachusetts Chan Medical School, Queen Mary University of London, Feinstein Institute for Medical Research, University of Colorado Denver
Protocol cited in 7 other protocols
Variable analysis
- Disaggregation method (immediate disaggregation vs. freezing tissue fragments)
- Cell viability after freezing and thawing
- Freezing media (CryoStor® CS10)
- Freezing protocol (4°C for 10 min, -80°C for 1 day)
- Thawing protocol (37°C water bath)
- Positive control: Not explicitly mentioned.
- Negative control: Not explicitly mentioned.
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!