5 and 6dpf AB/nacre larval zebrafish expressing GCaMP2, GCaMP3 or GCaMP5G under the elavl3 promoter were paralyzed by immersing them in 1 mg/ml solution of bungarotoxin dissolved in E3 fish embryo water and were subsequently embedded in 2% low melting point agarose in a 35 mm Petri dish. They were placed in a custom 2-photon microscope and imaged using a Mai Tai HP Ti-Sapphire laser tuned to 950 nm. The visual stimulus used for the experiment consisted of a light dot (0.5 mm × 0.5 mm) projected, using an amber (590 nm) LED mounted into a miniature LCOS projector, onto an opal glass screen directly underneath the larvae. Stimulus light was filtered with a narrow bandpass filter, and each fish was run through one stimulus set with the laser off to detect stimulus bleed-through, which was always negligible. The dot appeared to the left or right of the larva and moved on a straight line at a speed of 3 mm/s until it disappeared on the opposite side. The larva was located halfway along the dot’s trajectory and perpendicular to it, with the point of closest approach of the dot being 0.5 mm rostral to the larva. The experimental protocol consisted of 1 min dark, followed by a presentation every 30 s of the moving dot, alternating between left to right and right to left. There were ten such presentations (five in each direction). The experiment concluded with 1 min dark, and therefore lasted 7 min in total. Individual frames were captured at 138.32 ms per frame (7.23 Hz), using a quad-interlaced scan pattern that ensured that each cell was sampled evenly at 4 times this frame rate. Data analysis: Movies were assessed for x-y drift during the experiment (usually < 1 pixel), and a sub-pixel translation correction was applied using MATLAB software (David Heeger, NYU). Neuronal somata were detected based on their dark nuclei. Mean images were smoothed with a Gaussian, and local minima were detected. These were classified as cell nuclei if the ratio of the brightness 3 pixels from the center was more than 3.5 the brightness 1 pixel from the center, i.e. they look like a bright ring around a dark centre, and they were sufficiently bright (>17,500 photons detected per experiment). Fluorescence was then averaged over a 7×7 pixel square. Baseline fluorescence (F) was defined as the average fluorescence in the 50 frames immediately preceding each left-right stimulus.
Partial Protocol Preview
This section provides a glimpse into the protocol. The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Other organizations :
Howard Hughes Medical Institute, Janelia Research Campus, University of California, Davis, Champalimaud Foundation, Medical Research Council, University of Puerto Rico System, Yale University, Princeton University, Rockefeller University, Harvard University Press, University of California, San Francisco, Tata Institute of Fundamental Research, University of California, Los Angeles
Paralysis of larval zebrafish by immersing them in 1 mg/ml solution of bungarotoxin dissolved in E3 fish embryo water
Embedding of paralyzed larvae in 2% low melting point agarose
Presentation of visual stimulus consisting of a light dot (0.5 mm × 0.5 mm) projected onto an opal glass screen directly underneath the larvae using an amber (590 nm) LED
Movement of the light dot on a straight line at a speed of 3 mm/s until it disappeared on the opposite side, with the larva located halfway along the dot's trajectory and perpendicular to it
dependent variables
Calcium activity (measured by GCaMP2, GCaMP3 or GCaMP5G) in neuronal somata of 5 and 6 dpf AB/nacre larval zebrafish expressing these indicators under the elavl3 promoter
control variables
Laser being turned off during one stimulus set to detect any stimulus bleed-through, which was always negligible
Ensuring that the point of closest approach of the dot was 0.5 mm rostral to the larva
positive controls
None specified
negative controls
None specified
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required