Because the ratings of 1, 3, and 5 are surrogates for risk, they can be converted to risk intervals that incorporate the underlying probabilities. Therefore, the simplest, yet coarse, way to do this is to assume the ratings of 1, 3, and 5 span the range of risk from 0 to 1 (or 0 to 100%). A rating of 1, when mapped onto an interval of risks would be 0 to 0.32. A score of 3 would be 0.33 to 0.66 and a score of 5 would be 0.67 to 1. Consequently, if a pesticide has a “surface runoff potential” factor that has a score of 3, it is at medium risk of runoff. However, a discrete score of 3 does not capture the probabilistic nature of risk, yet the score of 3 is intended to represent medium risk. Therefore, the score needs to be mapped to an estimate of risk. This can be done most simply by assuming a uniform probability density function of risk values from 0.32 to 0.66 for medium risk. Medium risk implies uncertainty and probability, but a score of 3 does not accommodate that risk estimate. An interval of 0.33 to 0.66, however crudely, accommodates the probability of occurrence.
To demonstrate the consequences of mapping discrete risk ratings to probabilities, we calculated adjusted EIQs for a group of 20 actual insecticide active ingredients with unadjusted EIQs ranging from 22.1 (methiocarb) to 44 (diazinon). The insecticides evaluated were chosen randomly from lists of active ingredients in Yu (2008) , who provides a relatively complete list of currently registered insecticides. Five insecticides each were chosen randomly from four chemical classes: carbamates, neonicotinoids, organophosphates, and pyrethroids. The unadjusted EIQs and ratings were obtained from the New York State Integrated Pest Management Program, Cornell University (
Using Monte Carlo simulation (Oracle Crystal Ball® 11.2, Denver, CO), we calculated adjusted EIQs under different hypothetical scenarios by incorporating the probability ranges associated with the four factors (