Each functional run was approximately 5-min in length. Each run began and ended with a 15 s presentation of a fixation cross. To promote participant engagement, a trained research staff verbally talked with the participants between each run and asked if they would like to continue. In the dynamic ad runs, five food and five non-food TV commercials were presented which alternated in an AB pattern (Smith et al., 2007 (link); Maus et al., 2010 (link)). The block pattern for each run was randomized (AB or BA) along with which commercials were played within each block was also randomized. Each commercial was approximately 15 s in length. Static ad runs were similarly randomized but consisted of 10 food and 10 non-food static ads. Each ad image was displayed for 7.5 s followed immediately by another image of the same type (food or non-food) which was also displayed for 7.5 s for a total exposure time of 15 s. This back-to-back display of ads was arranged so that the ad exposure period matched that of the dynamic ad length (15 s). An additional 15 s fixation cross block was placed in the middle of each static ad run to ensure equal amounts of exposure to all stimulus types (i.e., static, dynamic, and fixation).
Functional Neuroimaging of TV Ad Viewing
Each functional run was approximately 5-min in length. Each run began and ended with a 15 s presentation of a fixation cross. To promote participant engagement, a trained research staff verbally talked with the participants between each run and asked if they would like to continue. In the dynamic ad runs, five food and five non-food TV commercials were presented which alternated in an AB pattern (Smith et al., 2007 (link); Maus et al., 2010 (link)). The block pattern for each run was randomized (AB or BA) along with which commercials were played within each block was also randomized. Each commercial was approximately 15 s in length. Static ad runs were similarly randomized but consisted of 10 food and 10 non-food static ads. Each ad image was displayed for 7.5 s followed immediately by another image of the same type (food or non-food) which was also displayed for 7.5 s for a total exposure time of 15 s. This back-to-back display of ads was arranged so that the ad exposure period matched that of the dynamic ad length (15 s). An additional 15 s fixation cross block was placed in the middle of each static ad run to ensure equal amounts of exposure to all stimulus types (i.e., static, dynamic, and fixation).
Corresponding Organization : Dartmouth College
Other organizations : Columbia University, Pennsylvania State University
Variable analysis
- Type of advertisement (food vs. non-food)
- Not explicitly mentioned
- Presentation format (dynamic vs. static)
- Exposure duration (15 seconds)
- Fixation cross duration (15 seconds)
- Randomization of ad block order (AB or BA) and specific ads within each block
- Positive control: Presentation of popular age-appropriate science TV show (MythBusters)
- Negative control: Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!