Pharmacophore Model for GES-5 Inhibitors
Corresponding Organization : University of Bergen
Other organizations : Johannes Gutenberg University Mainz, University of Padua, University of L'Aquila
Variable analysis
- The structure comparison of GES-5 and KPC-2 was performed using the Molecular Operating Environment (MOE; Chemical Computing Group, Montreal, QC, Canada) and PyMOL (Schrödinger, LLC, New York, NY, USA).
- The published structures of GES-5 (PDB code 4GNU and 4H8R) and our in-house structure were aligned with the structure of KPC-2 (PDB code 3RXW) to identify key interactions.
- The final pharmacophore was based on the apo-crystal structure of GES-5, which we have solved for this project (PDB code 6TS9), and the ligand 0JB of CTX-M-9 β-lactamase (PDB code 4DE0).
- The final pharmacophore contained the same features as our previous pharmacophore for KPC-2, namely a hydrogen-bond acceptor feature for interactions with Ser125, Thr230 and Thr232, a hydrophobic π-stacking feature with Trp99 and a hydrogen bond acceptor feature for interaction with Asn127.
- The interactions to Thr230 and Thr232 were set as mandatory for filtering the obtained docking hit list.
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!