Extraction and Analysis of mRNA and miRNA from Cells and Cartilage
In this study, mRNA was isolated from cultured cells and knee articular cartilage tissues. The cultured cells were rinsed with PBS and lysed in RNA-Solv® Reagent (Omega Bio-tek, Norcross, GA, USA). The knee cartilage samples were placed in paired RNase-Free 1.5 EP tubes with four ground beads (5 mm in diameter) and frozen with liquid nitrogen. Subsequently, the tissues were pulverized and homogenized using Tissuelyser-24 (Jingxin, Shanghai, China). The TissueLyser was operated twice for 30 s at 45 Hz. The above tissue powder (50–100 mg) was lysed in Omega RNA-Solv® Reagent and RNA was isolated using the E.Z.N.A.® Total RNA Kit I (Omega Bio-tek) according to manufacturer’s protocol. MiRNA levels were extracted using a miRNA Isolation Kit (Ambion). RNA was stored at − 80 °C. Reverse transcription was performed using 1.0 µg total RNA and then used to prepare cDNA using miRNA and HiFiScript cDNA kits (CWBIO, Beijing, China), which were used to investigate the expression of miRNA and mRNA, respectively. All qPCRs were performed in a 20 µL volume using appropriate primers (1 µL; Sangon Biotech, Shanghai, China), cDNA (1 µL), and a ROX-containing UltraSYBR Mixture (CWBIO) with an ABI 7500 Sequencing Detection instrument (Applied Biosystems, CA, USA). The thermocycler settings were as follows: 40 cycles of 95 °C for 5 s and 60 °C for 24 s. U6 was used as an internal control for microRNA, whereas β-actin served as the control for messenger RNA. The cycle threshold (Ct) values were collected and normalized to the level of U6 or β-actin, with three samples per group. The relative mRNA level of each target gene was calculated by using the 2−ΔΔCt method. Primer sequences are shown in Table 1.
Zhu Y., Zhang C., Jiang B, & Dong Q. (2023). MiR-760 targets HBEGF to control cartilage extracellular matrix degradation in osteoarthritis. Journal of Orthopaedic Surgery and Research, 18, 186.
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required