VOO phenolic extracts were further analyzed by HPLC in a Beckman Coulter liquid chromatographic system equipped with a System Gold 168 detector, a solvent module 126 and a Mediterranean Sea 18 column (4.0 mm i.d.×250 mm, particle size 5 μm) (Teknokroma, Barcelona, Spain) following a previously described methodology [24] (link). The quantification of phenols (except ferulic acid) and lignans was carried out at 280 nm using p-hydroxyphenyl-acetic acid as internal standard. The quantification of flavones and ferulic acid was done at 335 nm using o-coumaric acid as internal standard. The identification of compounds was confirmed by HPLC-MS using the same chromatographic system connected on-line with a MAT95 magnetic sector mass spectrometer (Finnigan Mat, Bremen, Germany) equipped with an ESI-II electrospray inonization (ESI) interface with the same column and gradient conditions. The ESI mass spectra in the positive mode were obtained under the following conditions: capillary temperature, 220°C; lens, skimmer, and octapole voltages were set to get optimal response for a pattern solution of reserpine. Nitrogen at 200 kPa was used as the sheath gas. Afterward, partial defocusing of interface was done in order to generate moderate collision-induced dissociation (CID) inside the ionic transport region. Under these conditions, the spectra show enough ionic fragmentation to verify structural information from the protonated molecular ion.
Extraction and Characterization of Olive Oil Phenolics
VOO phenolic extracts were further analyzed by HPLC in a Beckman Coulter liquid chromatographic system equipped with a System Gold 168 detector, a solvent module 126 and a Mediterranean Sea 18 column (4.0 mm i.d.×250 mm, particle size 5 μm) (Teknokroma, Barcelona, Spain) following a previously described methodology [24] (link). The quantification of phenols (except ferulic acid) and lignans was carried out at 280 nm using p-hydroxyphenyl-acetic acid as internal standard. The quantification of flavones and ferulic acid was done at 335 nm using o-coumaric acid as internal standard. The identification of compounds was confirmed by HPLC-MS using the same chromatographic system connected on-line with a MAT95 magnetic sector mass spectrometer (Finnigan Mat, Bremen, Germany) equipped with an ESI-II electrospray inonization (ESI) interface with the same column and gradient conditions. The ESI mass spectra in the positive mode were obtained under the following conditions: capillary temperature, 220°C; lens, skimmer, and octapole voltages were set to get optimal response for a pattern solution of reserpine. Nitrogen at 200 kPa was used as the sheath gas. Afterward, partial defocusing of interface was done in order to generate moderate collision-induced dissociation (CID) inside the ionic transport region. Under these conditions, the spectra show enough ionic fragmentation to verify structural information from the protonated molecular ion.
Corresponding Organization :
Other organizations : Consejo Superior de Investigaciones Científicas, Andalusian Institute of Agricultural and Fisheries Research and Training
Protocol cited in 4 other protocols
Variable analysis
- Extraction procedure using diol-bonded phase cartridge
- Concentration of internal standard compounds (p-hydroxyphenyl-acetic acid and o-coumaric acid)
- Phenolic compound composition and concentration in VOO samples
- Sample amount (2.5 g) for phenolic extraction
- HPLC analysis conditions (column, gradient, detection wavelengths)
- Mass spectrometry conditions (ESI-MS in positive mode)
- P-hydroxyphenyl-acetic acid and o-coumaric acid were used as internal standards for phenolic compound quantification
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!