The campaign was performed at the top of the Säntis mountain (2,502 m altitude) in north-eastern Switzerland, on the summit of which stands a 124-m-tall telecommunication tower. A general view of the experimental set-up is presented in Extended Data Fig. 1. The laser system was located in the radome building, sheltered in an air-tight, air-conditioned and thermally isolated tent. After exiting the tent, the laser output was directed downwards by a conduit through the radome wall to the terrace, where a 4′ folding mirror directed the beam into a beam-expanding sending telescope featuring a 7.14 magnification ratio. The entire laser path toward the telescope—presented in Extended Data Fig. 1a—was protected by an isolated aluminium housing to prevent any beam leakage and to reduce the perturbation from the environment.
The telescope was composed of an additional folding mirror, a secondary 100 mm spherical mirror and a 430-mm diameter off-axis aspheric (elliptic) primary mirror29 (link). The beam output, which had a diameter of 250 mm, was sent toward the tower tip with a vertical angle of 7°. Translation stages on the secondary mirror allowed us to focus the beam near the tower tip in order to set the onset of the filamentation process in the desired area in which upward lightning is initiated. The focal length of the telescope was set to 150 m to produce a dense filamentation area of 30–50 m above the tower tip.
Note that during the entire laser operation time, the airspace was closed by the air-traffic authority. Furthermore, air traffic was monitored by an automatic dependent surveillance–broadcast transceiver automatically switching off the laser in case of aircraft incursion into the temporary closed airspace zone.
Free full text: Click here