The campaign was performed at the top of the Säntis mountain (2,502 m altitude) in north-eastern Switzerland, on the summit of which stands a 124-m-tall telecommunication tower. A general view of the experimental set-up is presented in Extended Data Fig. 1. The laser system was located in the radome building, sheltered in an air-tight, air-conditioned and thermally isolated tent. After exiting the tent, the laser output was directed downwards by a conduit through the radome wall to the terrace, where a 4′ folding mirror directed the beam into a beam-expanding sending telescope featuring a 7.14 magnification ratio. The entire laser path toward the telescope—presented in Extended Data Fig. 1a—was protected by an isolated aluminium housing to prevent any beam leakage and to reduce the perturbation from the environment. The telescope was composed of an additional folding mirror, a secondary 100 mm spherical mirror and a 430-mm diameter off-axis aspheric (elliptic) primary mirror29 (link). The beam output, which had a diameter of 250 mm, was sent toward the tower tip with a vertical angle of 7°. Translation stages on the secondary mirror allowed us to focus the beam near the tower tip in order to set the onset of the filamentation process in the desired area in which upward lightning is initiated. The focal length of the telescope was set to 150 m to produce a dense filamentation area of 30–50 m above the tower tip. Note that during the entire laser operation time, the airspace was closed by the air-traffic authority. Furthermore, air traffic was monitored by an automatic dependent surveillance–broadcast transceiver automatically switching off the laser in case of aircraft incursion into the temporary closed airspace zone.
Houard A., Walch P., Produit T., Moreno V., Mahieu B., Sunjerga A., Herkommer C., Mostajabi A., Andral U., André Y.B., Lozano M., Bizet L., Schroeder M.C., Schimmel G., Moret M., Stanley M., Rison W.A., Maurice O., Esmiller B., Michel K., Haas W., Metzger T., Rubinstein M., Rachidi F., Cooray V., Mysyrowicz A., Kasparian J, & Wolf J.P. (2023). Laser-guided lightning. Nature Photonics, 17(3), 231-235.
Publication 2023
Aluminium Axis Laser operation Tall Telescope
Corresponding Organization :
Other organizations :
Laboratoire d'Optique Appliquée, École Polytechnique Fédérale de Lausanne, TRUMPF (Germany), Arianespace (France), Swisscom (Switzerland), University of Geneva, Institute for Environmental Sciences
Translation stages on the secondary mirror to focus the beam near the tower tip
dependent variables
Onset of the filamentation process in the desired area where upward lightning is initiated
control variables
Airspace closed by the air-traffic authority during the entire laser operation time
Automatic dependent surveillance–broadcast transceiver to automatically switch off the laser in case of aircraft incursion into the temporary closed airspace zone
Laser system located in an air-tight, air-conditioned and thermally isolated tent
Entire laser path toward the telescope protected by an isolated aluminum housing to prevent beam leakage and reduce environmental perturbation
positive controls
None specified
negative controls
None specified
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required