Polyclonal anti-PS1-NTF (B19.2), -CTF (B32.1) and -TLN (B36.1) have been described previously (Annaert et al., 2001 (link)). B63.1 and B59.1 were generated using a synthetic peptide mimicking the final 16 and 18 amino acids of APP and nicastrin, respectively, coupled to KLH (Pierce Chemical Co.). Mab 9C3 against nicastrin was produced by immunizing the same peptide in balb/c mice followed by generation of a hybridoma cell line according to established procedures. We acknowledge the antibody gifts of anti-calnexin (A. Helenius, ETH Zurich, Zurich, Switzerland), anti-ergic-53 (J. Saraste, University of Bergen, Bergen, Norway) -LC3 (T. Yoshimori, National Institute of Genetics, Shizuoka-ken, Japan), -Apg12 (N. Mizushima, National Institute for Basic Biology, Okazaki, Japan), PIP2 (G. Hammond, Cancer Research Institute, London, UK), -LBPA (J. Gruenberg, University of Geneva, Geneva, Switzerland), and -APP COOH terminus (c 1/6.1; P. Mathews, Nathan Kline Institute, Orangeburg, NY). Mabs to Lamp-2 (Abl-93) were obtained from Developmental Studies Hybridoma Bank (Iowa City, Iowa); anti-synaptophysin (cl.7.2) and anti-PS1-CTF (mAb 5.2) were from R. Jahn (MPI-Göttingen, Göttingen, Germany) and B. Cordell (Scios Inc., Sunnyvale, CA). mAbs to GM130 and EEA1 were from BD Biosciences, the transferrin receptor from Zymed Laboratories, β-COP from Sigma-Aldrich, and BIP from StressGen Biotechnologies.
Immunolabeling and Antibody Characterization
Polyclonal anti-PS1-NTF (B19.2), -CTF (B32.1) and -TLN (B36.1) have been described previously (Annaert et al., 2001 (link)). B63.1 and B59.1 were generated using a synthetic peptide mimicking the final 16 and 18 amino acids of APP and nicastrin, respectively, coupled to KLH (Pierce Chemical Co.). Mab 9C3 against nicastrin was produced by immunizing the same peptide in balb/c mice followed by generation of a hybridoma cell line according to established procedures. We acknowledge the antibody gifts of anti-calnexin (A. Helenius, ETH Zurich, Zurich, Switzerland), anti-ergic-53 (J. Saraste, University of Bergen, Bergen, Norway) -LC3 (T. Yoshimori, National Institute of Genetics, Shizuoka-ken, Japan), -Apg12 (N. Mizushima, National Institute for Basic Biology, Okazaki, Japan), PIP2 (G. Hammond, Cancer Research Institute, London, UK), -LBPA (J. Gruenberg, University of Geneva, Geneva, Switzerland), and -APP COOH terminus (c 1/6.1; P. Mathews, Nathan Kline Institute, Orangeburg, NY). Mabs to Lamp-2 (Abl-93) were obtained from Developmental Studies Hybridoma Bank (Iowa City, Iowa); anti-synaptophysin (cl.7.2) and anti-PS1-CTF (mAb 5.2) were from R. Jahn (MPI-Göttingen, Göttingen, Germany) and B. Cordell (Scios Inc., Sunnyvale, CA). mAbs to GM130 and EEA1 were from BD Biosciences, the transferrin receptor from Zymed Laboratories, β-COP from Sigma-Aldrich, and BIP from StressGen Biotechnologies.
Partial Protocol Preview
This section provides a glimpse into the protocol.
The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Corresponding Organization :
Other organizations : VIB-KU Leuven Center for Cancer Biology, University Medical Center Utrecht, Galapagos (Belgium), Baylor College of Medicine, Kiel University
Protocol cited in 12 other protocols
Variable analysis
- γ-Secretase inhibitors (from Calbiochem (X or L685,458), Elan (DAPT), and AstraZeneca (Compound C))
- Not explicitly mentioned
- Cell culture media (from GIBCO BRL)
- Labeling reagents (TOPRO-3 and phalloidin-Alexa 568 from Molecular Probes, Inc., MDC from Sigma-Aldrich)
- Antibodies (polyclonal anti-PS1-NTF (B19.2), -CTF (B32.1) and -TLN (B36.1), B63.1 and B59.1, Mab 9C3 against nicastrin, anti-calnexin, anti-ergic-53, -LC3, -Apg12, PIP2, -LBPA, -APP COOH terminus, Mabs to Lamp-2, anti-synaptophysin, anti-PS1-CTF, mAbs to GM130 and EEA1, transferrin receptor, β-COP, BIP)
- Not explicitly mentioned
- Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!