Lipids were extracted from membrane fractions with chloroform/methanol/HCl (50:100:1.5, vol/vol/vol), as described by Bligh and Dyer 1959. Using a gentle stream of nitrogen, the organic phase was evaporated and the dried lipids were redissolved in chloroform/methanol (1:2, vol/vol). Phosphate determination was performed as described (Rouser et al. 1970), except that the assay volume was reduced by a factor of four. Glassware was used throughout the procedures. MS was done on a QII triple quadrupole instrument (Micromass) equipped with a nano-ESI source. Nitrogen was used as a drying gas. The source temperature was set to 30°C. A capillary voltage of ± 600–800 V was applied, depending on the ion mode. Argon was used as collision gas at a nominal pressure of 3 × 10−3 mbar. Resolution of Q1 and Q3 was set to achieve isotope resolution. A collision energy of 30 eV was used for PC and SM detection in positive PREC mode, selecting a fragment ion of mass/charge (m/z) 184 (phosphocholine ion). Detection of cholesterol as cholesterol sulfate was done in negative PREC mode, selecting for a fragment ion of m/z 97 (sulfate ion) at a collision energy of 62 eV (Sandhoff et al. 1999). The mass range m/z scanned was 600–1,000 for PC and SM detection and 450–480 for cholesterol sulfate detection. For each quantitative measurement, 100 (PC and SM) or 50 (cholesterol) consecutive scans of 4-s duration were averaged. PC and SM quantification was done as described (Brügger et al. 1997). 1,2-O-dilauroyl-sn-glycero-3-phosphocholine, 1,2-O-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-O-diarachidoyl-sn-glycero-3-phosphocholine, and 1,2-O-dibehenoyl-sn-glycero-3-phosphocholine, as well as N-myristoyl-SM, N-oleoyl-SM, and N-pentacosanoyl-SM were used as standards. In brief, PC and SM standards dissolved in chloroform/methanol (1:2, vol/vol) were added to the extraction solvent before lipid extraction of membrane fractions. Dried lipids were redissolved in chloroform/methanol (1:2, vol/vol). Ammonium acetate (100-mM stock solution in methanol) was added to a final concentration of 5 mM to acidify the solution. Before mass spectrometric analysis, samples were spun at 15,000 gav for 5 min at 4°C in a microfuge (Eppendorf). Nano flow borosilicate glass tips of type D (Teer Coatings) were used. Instrument parameters were set as described above. For quantitative analysis, mass correction and isotope correction for [M+1], [M+2], and [M+3] isotopes were performed. Quantification of cholesterol was performed as described previously (Sandhoff et al. 1999).
Partial Protocol Preview
This section provides a glimpse into the protocol. The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Brügger B., Sandhoff R., Wegehingel S., Gorgas K., Malsam J., Helms J.B., Lehmann W.D., Nickel W, & Wieland F.T. (2000). Evidence for Segregation of Sphingomyelin and Cholesterol during Formation of Copi-Coated Vesicles. The Journal of Cell Biology, 151(3), 507-518.
Lipid extraction method (chloroform/methanol/HCl, as described by Bligh and Dyer 1959)
Mass spectrometry parameters (QII triple quadrupole instrument, nano-ESI source, nitrogen as drying gas, source temperature, capillary voltage, argon as collision gas, collision energy, mass range scanned)
dependent variables
Phospholipid (PC and SM) quantification
Cholesterol sulfate quantification
control variables
Glassware used throughout the procedures
Phosphate determination method (as described by Rouser et al. 1970, with reduced assay volume)
PC and SM standards used for quantification (1,2-O-dilauroyl-sn-glycero-3-phosphocholine, 1,2-O-dimyristoyl-sn-glycero-3-phosphocholine, 1,2-O-diarachidoyl-sn-glycero-3-phosphocholine, 1,2-O-dibehenoyl-sn-glycero-3-phosphocholine, N-myristoyl-SM, N-oleoyl-SM, and N-pentacosanoyl-SM)
Cholesterol quantification method (as described by Sandhoff et al. 1999)
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required