Evaluating Transfluthrin Dose-Response Against Mosquitoes
A fully balanced cross-over dose–response experiment was conducted using two I-LACT chambers of the SFS, one for the treatment and one for the control, whereby mosquitoes could interact with the human volunteers (Fig. 2). As previous experiments did not show any difference in the numbers of mosquitoes collected between the chambers, the treated and untreated emanators were fixed to the respective chambers for the duration of the experiment to avoid any potential contamination. Each experimental day, one replicate for biting and one for landing was conducted with the same volunteers. A replicate comprised 1 h of exposure to either the treatment (transfluthrin) or the negative control. To simulate an outdoor peridomestic setting, biting or landing was conducted 2 m from the end inside the I-LACT (Fig. 3). Four doses of transfluthrin-treated emanators (5 g, 10 g, 15 g and 20 g) were evaluated consecutively. Each dose was tested for six replicates, after which the emanator with the next highest concentration of transfluthrin was used.
Flow chart showing the various iterations of the experiments conducted in this study
Schematic representation of the I-LACT used for the experiments. a Setup of the experiment with transfluthrin-impregnated eave-positioned targeted insecticide (EPTI) strips against Anopheles mosquitoes. b Setup of the experiment with freestanding transfluthrin passive emanators (FTPE) against Aedes aegypti
Two male volunteers aged 25–40 years were recruited by written informed consent. The volunteers were non-smokers and non-alcohol drinkers, and did not use perfumed cosmetics prior to the experiment to minimize heterogeneity in their attraction to mosquitoes [29 (link)]. To standardize the area available to the mosquitoes for biting (knees and ankles), the volunteers wore closed shoes and a bug jacket (Fig. 3). The volunteers were rotated between compartments (treatments) after each experimental day (one day for landing and the following day for biting) to account for differential attractiveness to mosquitoes between individuals [30 (link)]. Temperature and humidity were recorded inside one of the I-LACT using a Tiny Tag Gemini Data Logger (Chichester, West Sussex, UK). To ensure transfluthrin vaporization, the experiments were conducted at temperatures above 23 ºC [31 (link)]. On each experimental day, the treatment and control were allocated to one of the two chambers of the I-LACT 45 min before the experiment commenced, to allow emanation of the transfluthrin to have started before the experiment began. The experiment started when the volunteer sat down on the chair and the mosquitoes were released into the chamber of the I-LACT from the release cages, which were opened by pulling a string (Fig. 3).
Tambwe M.M., Kibondo U.A., Odufuwa O.G., Moore J., Mpelepele A., Mashauri R., Saddler A, & Moore S.J. (2023). Human landing catches provide a useful measure of protective efficacy for the evaluation of volatile pyrethroid spatial repellents. Parasites & Vectors, 16, 90.
Dose of transfluthrin-treated emanators (5 g, 10 g, 15 g, and 20 g)
dependent variables
Number of mosquitoes biting
Number of mosquitoes landing
control variables
Mosquito attraction differences between individual volunteers
Temperature and humidity inside the I-LACT chambers
Transfluthrin vaporization (experiments conducted at temperatures above 23 ºC)
Area available for mosquitoes to bite (volunteers' knees and ankles)
Potential contamination between chambers (treated and untreated emanators fixed to respective chambers)
controls
Negative control (untreated emanators)
Annotations
Based on most similar protocols
Etiam vel ipsum. Morbi facilisis vestibulum nisl. Praesent cursus laoreet felis. Integer adipiscing pretium orci. Nulla facilisi. Quisque posuere bibendum purus. Nulla quam mauris, cursus eget, convallis ac, molestie non, enim. Aliquam congue. Quisque sagittis nonummy sapien. Proin molestie sem vitae urna. Maecenas lorem.
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to
get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required