Samples were plated on agar selective for Streptococcus mutans (TSYC20B) which was incubated for 72 h at 37 °C in an atmosphere of 95% nitrogen and 5% carbon dioxide. Following incubation S mutans was identified by characteristic colony morphology under a dissecting microscope. A sub-sample of positive colonies was confirmed by carbohydrate fermentation patterns. Each sample was assessed independently. After three contiguous positive cultures for S mutans it was assumed that S mutans had been acquired. The samples were then placed in black semi-solid transport media VMG II50 (link) and stored at 80 °C.
Streptococcus mutans Acquisition in Twins
Samples were plated on agar selective for Streptococcus mutans (TSYC20B) which was incubated for 72 h at 37 °C in an atmosphere of 95% nitrogen and 5% carbon dioxide. Following incubation S mutans was identified by characteristic colony morphology under a dissecting microscope. A sub-sample of positive colonies was confirmed by carbohydrate fermentation patterns. Each sample was assessed independently. After three contiguous positive cultures for S mutans it was assumed that S mutans had been acquired. The samples were then placed in black semi-solid transport media VMG II50 (link) and stored at 80 °C.
Corresponding Organization : University of Sydney
Other organizations : University of California, Los Angeles, University of Adelaide, Westmead Institute, University of Melbourne, New South Wales Department of Health
Variable analysis
- None explicitly mentioned
- Presence/absence of Streptococcus mutans
- Time between sample collection and culturing (7-10 days)
- Culturing conditions (TSYC20B agar, 72 h at 37 °C, 95% N2, 5% CO2)
- Identification of S. mutans (colony morphology, carbohydrate fermentation)
- Positive control: Confirmed S. mutans colonies
- Negative control: Not explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!