The gross tumour volumes (GTV) of the brain and the spine were delineated as follows: the cranial contouring included the whole brain and up to the junction of the cervical vertebrae C5 and C6. The superior end of the spinal cord starts from the end of brain GTV and goes up to the inferior end of the thecal sac, as seen on the sagittal view of the MRI. The planning target volume (PTV) for the brain was generated by applying a 3 mm margin on the GTV. For the spinal cord, the PTV was generated using a 7 mm margin over GTV7 (link). The brain and spinal PTVs were summed to generate a single PTV for the plan optimisation. To standardise the contouring of organs at risk for all patients, a predefined structure template consisting of bladder, bowel, brain stem, chiasm, cochlea (bilateral), duodenum, esophagus, eyes (bilateral), thyroid gland, heart, humerus head (bilateral), kidneys (bilateral), lacrimal gland (bilateral), larynx, lens (bilateral), lung (bilateral), mandible, optic nerve (bilateral), oral cavity, ovary (bilateral for female patients), parotid (bilateral), pituitary gland, rectum, stomach, and submandibular glands (bilateral) was used.
Whole Brain and Spinal Cord Radiotherapy Simulation
The gross tumour volumes (GTV) of the brain and the spine were delineated as follows: the cranial contouring included the whole brain and up to the junction of the cervical vertebrae C5 and C6. The superior end of the spinal cord starts from the end of brain GTV and goes up to the inferior end of the thecal sac, as seen on the sagittal view of the MRI. The planning target volume (PTV) for the brain was generated by applying a 3 mm margin on the GTV. For the spinal cord, the PTV was generated using a 7 mm margin over GTV7 (link). The brain and spinal PTVs were summed to generate a single PTV for the plan optimisation. To standardise the contouring of organs at risk for all patients, a predefined structure template consisting of bladder, bowel, brain stem, chiasm, cochlea (bilateral), duodenum, esophagus, eyes (bilateral), thyroid gland, heart, humerus head (bilateral), kidneys (bilateral), lacrimal gland (bilateral), larynx, lens (bilateral), lung (bilateral), mandible, optic nerve (bilateral), oral cavity, ovary (bilateral for female patients), parotid (bilateral), pituitary gland, rectum, stomach, and submandibular glands (bilateral) was used.
Corresponding Organization :
Other organizations : Manipal Hospital, Varian Medical Systems (United States), IRCCS Humanitas Research Hospital, Humanitas University
Variable analysis
- Patient position (head-first, supine)
- Immobilisation method (five-clamp thermoplastic covering brain to chest, additional two-clamp thermoplastic for abdomen and pelvis)
- Use of anesthesia
- Gross tumor volumes (GTV) of brain and spine
- Planning target volumes (PTV) for brain and spinal cord
- Slice thickness (3-mm uniform) from brain to mid-thigh
- Positioning of markers (first in brain, second at abdomen level)
- Imaging modalities (CT, 3D T1-contrast, T2-flair MRI)
- Contouring of organs at risk (predefined structure template)
- None explicitly mentioned
- None explicitly mentioned
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!