Example 18

Antagonistic TFNR2 polypeptides, such as antibodies, antigen-binding fragments thereof, single-chain polypeptides, and constructs described herein, may exert biological activities on T-reg cells and T effector cells. To investigate these effects, antagonistic TNFR2 antibodies TNFRAB1 and TNFRAB2 were incubated with cultured T-reg cells at ascending concentrations of antibody, and the percentage change in the quantity of T-reg cells in culture was subsequently recorded. The results of these experiments are shown in FIGS. 21A and 21B, and demonstrate that antagonistic TNFR2 antibodies TNFRAB1 and TNFRAB2 reduce or inhibit the proliferation of T-reg cells in culture in a dose-dependent fashion.

Additionally, antagonistic TNFR2 antibodies TNFRAB1 and TNFRAB2 promote the proliferation of T effector cells. To investigate this activity, antagonistic TNFR2 antibodies TNFRAB1 and TNFRAB2 were incubated with cultured CD8+ T cells at ascending concentrations of antibody, and the percentage change in the quantity of CD8+ T cells in culture was subsequently recorded. The results of these experiments are shown in FIG. 21C, and demonstrate that antagonistic TNFR2 antibodies TNFRAB1 and TNFRAB2 increase the proliferation of T effector cells in a dose-dependent fashion.

The antagonistic TNFR2 antibodies TNFRAB1 and TNFRAB2 also directly kill TNFR2-expressing cancer cells. The antagonistic TNFR2 antibody TNFRAB1, was incubated with cultured OVCAR3 cells, a line of TNFR2+ ovarian cancer cells, at ascending concentrations of antibody, and the percentage change in the quantity of CD8+ T cells in culture was subsequently recorded. The results of this experiments are shown in FIG. 21D, and demonstrate that the antagonistic TNFR2 antibody TNFRAB1 suppresses the proliferation of TNFR2+ cancer cells in a dose-dependent fashion.

Taken together, the data shown in FIGS. 21A-21D demonstrate that antagonistic TNFR2 polypeptides, such as anti-TNFR2 antibodies, antigen-binding fragments thereof, single-chain polypeptides, and constructs described herein, are capable of exerting therapeutic effects through several distinct mechanisms. Antagonistic TNFR2 polypeptides can suppress T-reg cell proliferation and increase the proliferation of T effector cells, which can then mount an immune response against, for example, a cancer cell or a cell of an infectious pathogen. Additionally, antagonistic TNFR2 polypeptides can directly kill cancer cells that express TNFR2. Through these mechanisms, for example, antagonistic TNFR2 polypeptides, such as those described herein, can be used to treat patients suffering from a variety of cancers and infectious diseases, such as those conditions described herein.

Free full text: Click here