Automatic identification and enumeration of aPC was performed in 110 MM BM follow-up (VGPR or CR/sCR) samples using the automatic gating function of the Infinicyt software and previously described procedures,49 , 50 and the results were compared against the conventional expert-guided PC-identification/gating approach. For automatic gating, a database consisting of a subset of 14 normal BM samples stained with Version 5 of the antibody panel was constructed and used.50 In a subset of 31 MM follow-up BM samples with low MRD levels (for example, ⩽10−4) in which enough DNA was available, MRD was also evaluated by NGS. For this purpose, patient-specific VDJH rearrangements were amplified and directly sequenced from DNA extracted from diagnostic samples using the DNAzol reagent (MRC, Cincinnati, OH, USA) and IGHV family-specific primers that covered framework regions 1 (FR1) and FR2, plus a JH consensus primer, as described elsewhere.26 (link), 32 (link)VDJH rearrangements identified at diagnosis were used as MRD-targeted sequences for subsequent follow-up samples. Follow-up DNA samples were amplified using the LymphoTrack IGH Assay (InVivoScribe Technologies, San Diego, CA, USA) and sequenced in an Illumina MiSeq platform (Illumina, San Diego, CA, USA). To all reactions, a known amount of DNA from the MWCL-1 cell line was added as reference control for cell enumeration. The Fastq files generated were analyzed with the LymphoTrack/MiSeq Software (InVivoScribe/Illumina). The number of MRD cells was calculated from the number of reads for the diagnostic VDJH target rearrangements and the number of reads of the reference rearrangement; percentage MRD was calculated upon dividing the number (× 100) of MRD cells by the total number of cells in the reaction.
Parallel Evaluation of NGF MRD in Multiple Myeloma
Automatic identification and enumeration of aPC was performed in 110 MM BM follow-up (VGPR or CR/sCR) samples using the automatic gating function of the Infinicyt software and previously described procedures,49 , 50 and the results were compared against the conventional expert-guided PC-identification/gating approach. For automatic gating, a database consisting of a subset of 14 normal BM samples stained with Version 5 of the antibody panel was constructed and used.50 In a subset of 31 MM follow-up BM samples with low MRD levels (for example, ⩽10−4) in which enough DNA was available, MRD was also evaluated by NGS. For this purpose, patient-specific VDJH rearrangements were amplified and directly sequenced from DNA extracted from diagnostic samples using the DNAzol reagent (MRC, Cincinnati, OH, USA) and IGHV family-specific primers that covered framework regions 1 (FR1) and FR2, plus a JH consensus primer, as described elsewhere.26 (link), 32 (link)VDJH rearrangements identified at diagnosis were used as MRD-targeted sequences for subsequent follow-up samples. Follow-up DNA samples were amplified using the LymphoTrack IGH Assay (InVivoScribe Technologies, San Diego, CA, USA) and sequenced in an Illumina MiSeq platform (Illumina, San Diego, CA, USA). To all reactions, a known amount of DNA from the MWCL-1 cell line was added as reference control for cell enumeration. The Fastq files generated were analyzed with the LymphoTrack/MiSeq Software (InVivoScribe/Illumina). The number of MRD cells was calculated from the number of reads for the diagnostic VDJH target rearrangements and the number of reads of the reference rearrangement; percentage MRD was calculated upon dividing the number (× 100) of MRD cells by the total number of cells in the reaction.
Partial Protocol Preview
This section provides a glimpse into the protocol.
The remaining content is hidden due to licensing restrictions, but the full text is available at the following link:
Access Free Full Text.
Corresponding Organization :
Other organizations : Universidad de Salamanca, Centro de Investigación del Cáncer, Cancer Research Center, Clinica Universidad de Navarra, Instituto de Investigación Biomédica de Salamanca, University Hospital Schleswig-Holstein, University of Lübeck, Erasmus MC, Research Institute Hospital 12 de Octubre, Universidade Federal do Rio de Janeiro, Instituto Português de Oncologia Francisco Gentil, Medical University of Silesia, Hospital Clínic de Barcelona, Catholic University of Ávila, Hospital General De Segovia, Hospital Universitario de Burgos, Hospital El Bierzo, Cedars-Sinai Medical Center
Protocol cited in 17 other protocols
Variable analysis
- NGF MRD approach
- Conventional 8-color flow-MRD technique
- Presence vs absence of myeloma-associated phenotypes
- CyIg light chain restriction in case of NGF
- Automatic identification and enumeration of abnormal plasma cells (aPC)
- BM samples (n=110 in VGPR or CR/sCR)
- Staining of 300 μl of whole BM with a single 8-color antibody combination for conventional flow-MRD
- Median volume of 1.5±1.3 ml (range: 0.1–5.3 ml) for the NGF approach
- Database consisting of a subset of 14 normal BM samples stained with Version 5 of the antibody panel for automatic gating
- Patient-specific VDJH rearrangements identified at diagnosis for subsequent follow-up samples in NGS analysis
- Known amount of DNA from the MWCL-1 cell line as reference control for cell enumeration in NGS analysis
Annotations
Based on most similar protocols
As authors may omit details in methods from publication, our AI will look for missing critical information across the 5 most similar protocols.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!